Syllabus Frame work- Implemented from July 2018

Department: Institute of Bioinformatics and Biotechnology (Jointly merged with Department of Biotechnology)

Course: Five years integrated M.Sc. Biotechnology Duration: Five years

Semester I		
Core Courses		
Subject Code	Subject Title	Number of Credits
IBT-101T	Fundamentals of Physics I	3
IBT-102T	Fundamentals of Chemistry I	3
IBT-103T	Mathematics I	2
IBT-104T	Plant, Animal and Microbial World	3
IBT-121P	Laboratory Exercises in Physics I	2
IBT-122P	Laboratory Exercises in Chemistry I	2
IBT-123P	Laboratory Exercises in Biology I	2

Total Number of Credits: 17 (Core)

Semester II			
Core Courses			
Subject Code	Subject Title	No. of Credits	
IBT-201T	Applied Physics (Fundamentals of Electronics & Instrumentation)	2	
IBT-202T	Applied Chemistry	2	
IBT-108T+P	Introduction to Computer Science & Programming Languages	2	
IBT-206T	Biomolecules	2	
IBT-207T	Statistics I	2	
IBT 212T	Introduction to Microbiology and Genetics	2	
IBT-221P	Laboratory Exercises in Applied Physics II	2	
IBT-222P	Laboratory Exercises in Applied Chemistry II	2	
IBT-223P	Laboratory Exercises in Biology & Microbial Genetics	2	
IBT 225 P	Practicals in Statistics I	1	

Elective Courses			
IBT-EL1T+P	Introduction to Laboratory Instrumentation and Safety (T+P)	2	
IBT-EL2T+P	Introduction to Ecosystems and Ethology (T+P)	2	

Total Number of Credits = 21 (19 core + 2 elective)

Semester III		
Core Courses		
Subject Code	Subject Title	No. of Credits
IBT-208T+P	Advances in Computational Programming	2
IBT-209T	Principles and Advances in Molecular Biology	2
IBT-305T	Biomathematics & Biostatistics	2
IBT-306T	Microbial, Plant and Animal Biodiversity	2
IBT-321T+P	Stereochemistry	2
IBT-322P	Laboratory Exercises in Molecular Biology	2
IBT-323P	Laboratory Exercises in Biodiversity	2
Elective Courses		
IBT-EL3T	Advanced Biostatistics	3
IBT-EL4T+P	Introduction to Analytical Techniques and Applications	3
IBT-EL5T	Practices and Ethics in Science	3

Total Number of Credits = 20 (14 core + 6 elective)

Semester IV		
Core Courses		
Subject Code	Subject Title	No. of Credits
IBT-204T	English	2
IBT-205T	Cellular Basis of Structure and Function in Biology	2
IBT-307T	Biochemical and Biophysical Techniques	2
IBT-401T	Modern Physics	2
IBT-403T	Spectroscopy of Biomolecules	2
IBT-405T	Plant and Animal Physiology	2

IBT-324 P	Practical Applications of Biochemical and Biophysical Techniques	2
IBT-328 P	Laboratory Exercises in Cell Biology and Physiology	2
IBT-421 P	Laboratory Techniques in Molecular Biology	2
Elective Courses	S	
IBT-EL6T+P	Biophysics	3
IBT-EL7T+P	Host-Pathogen Interaction	3
IBT-EL8T	Advanced Biomathematics	3

Total Number of Credits: 24 (18 core + 6 elective)

Semester V		
Core Courses		
Subject Code	Subject Title	No. of Credits
IBT-314T	Developmental Biology of Higher organisms	2
IBT-406T	Microbial Biotechnology I & II	2
IBT-404T	Genetics of Higher Organisms	2
IBT-107T	Seminars	1
IBT-422P	Laboratory Exercises in Microbial Biotechnology	2
IBT-329P	Laboratory Exercises in Developmental Biology	1
IBT-513T+P	Basic Separation Techniques in Biology & Biophysics	3
IBT-325P	Introduction to Computational Biology	2
Elective Courses		
IBT-EL9T+P	Elective I Histochemistry and cytochemistry	3
IBT-EL10T+P	Elective II Heterocyclic chemistry	3
IBT-EL11T+P	Elective III Basics of model systems in Biology	3

Total Number of Credits: 21 (15 core + 6 elective)

Semester VI		
Core Courses		
Subject Code	Subject Title	No. of Credits
IBT-210T	Immunology I	2
IBT-309T	Bioinformatics I	2

IBT-409T+P	Plant Tissue Culture	2
IBT-326 P	Lab Exercises in Bioinformatics	2
IBT-213T+P	Project + Project Seminar	4
IBT-224 P	Techniques in Immunology I	2
IBT-423T+P	Animal Cell Culture I	2
Elective Courses		
IBT-EL12T+P	Elective I Food biotechnology	3
IBT-EL13T+P	Elective II High-end instrumentation in Biology	3
IBT-EL14T+P	Elective III Nanotechnology and Biomaterial	3

Total Number of Credits: 22 (16 core + 6 elective)

Semester VII				
Core Courses	Core Courses			
Subject Code	Subject Title	No. of Credits		
IBT-602T	Advances in Molecular Biology	2		
IBT-603T	Enzyme Technology	3		
IBT-310T	Immunology II	2		
IBT-311T+P	Animal cell culture II	2		
IBT-411T+P	Bioinformatics II	3		
IBT-621P	Lab Exercises in Enzymology	2		
Elective Courses				
IBT-EL15T+P	Nucleic acid Protein chemistry	3		
IBT-EL16 T+P	Model systems to study Human biology	3		
IBT-EL17T+P	Natural Product and Medicinal Chemistry	3		

Total Number of Credits: 20 (14 core + 6 elective)

Semester VIII			
Core Courses			
Subject Code	Subject Title	No. of Credits	
IBT-501T+P	Introduction to Omics I	3	

IBT-601T	Introduction to Genetic Engineering	2
IBT-407T	Metabolic Pathways	3
IBT-604T+P	Applications of Plant Tissue culture	2
IBT-622P	Laboratory Exercises in RDT	3
IBT-623T+P	Advances in Cell Biology (GT/TD)	2
Elective Courses		
IBT-EL18T+P	Structural Biology & Protein Engineering	3
IBT-EL19T+P	Applications of Biotech in Environment	3
IBT-EL20T+P	High End Instrumentation II	3

Total Number of Credits: 21 (15 core + 6 elective)

Semester IX		
Core Courses		
Subject Code	Subject Title	No. of Credits
IBT-502T+P	Omics II	2
IBT-503T	Review writing	1
IBT-701T	Fermentation Technology and Downstream Processing	3
IBT-702T+P	Plant Biotechnology	3
IBT-703T	Seminars in Advanced Genetic Engineering	2
IBT-721P	Laboratory Exercises in Fermentation Technology and Downstream Processing	3

Total Number of Credits: 14 (core)

	Semester X	
Core Courses		
Subject Code	Subject Title	No. of Credits
IBT-723P	Project	20

Total Number of Credits: 20

UGC recommended courses (Additional 10 credits)		
Subject Code Subject Title		No. of Credits
	Cyber security/Information security	4C
	Skill based credits	4C

Human rights education	2C
Introduction to Constitution (From Batch 2020)	2C

Semester wise detail Syllabus-Implemented from July 2018

SEMESTER I (17 credits)

IBT 101T

Fundamentals of Physics

3 credits

Work and Energy, Potential and Kinetic energy, conservation laws of momentum and energy, non-conservative forces.

Rotational motion – rotational variables, kinetic energy of rotation, rotational inertia, torque, Newton's second law of angular motion, and conservation of angular momentum. Rigid body, its Kinetic energy, angular momentum conservation, precession of top (elementary). Law of gravitation, Concept of temperature and its measurement, heat and work, First law of thermodynamics, Second law of thermodynamics Carnot engine and cycle, isothermal and adiabatic processes, enthalpy and concept of entropy.

Fluids at rest, pressures within fluids, upthrust, Archimedes' principle, Surface phenomena. Fluid dynamics, streamlines,Bernoulli's equation and its applications. Viscosity, Reynold's number, Turbulence.

Revision of electrostatics, Applications of Gauss law, electric potential equipotential surfaces, dipole, potential calculation in simple cases. Ampere's law and its applications, Lorentz force, cyclotron motion, magnetic force on a current carrying wire, Torque on a current.

Faradays law of induction, Lenz's law, induction and induced electric field, Alternating current induction (self and mutual), L-R, C-R and L-C-R circuits, resonance energy stored in inductance and capacitance. Maxwell's modification of Ampere's law, displacement current, qualitative discussion of traveling electromagnetic waves, energy transport, Poynting vector, radiation pressure and polarization.

References:

- 1. University Physics by F W Sears
- 2. Fundamentals of physics by Haliday, Resnick and Walke
- 3. Lecture series by Feynman.
- 4. Physics by Catnell and Johnson
- 5. Principles of Physics: H.C. Verma

IBT 102T Fundamentals of Chemistry 3 credits

1. Atomic structure – Bohr theory, de Broglie hypothesis, Heisenberg's uncertainty principle, atomic spectra, wavefunction and its interpretation, Formulation of Schrodinger equation, particle in a box, polar coordinates, hydrogen like atoms-spherical harmonics, polar plots, hydrogenic orbitals, many electron atoms, LS coupling 15 L

2. **Molecules**: Born Oppenheimer approximation, PE curve, Hydrogen molecule, valence bond theory, hybridization, hybrid orbitals, LCAO, homo- and hetero- nuclear molecules, bond order, bond dissociation energies, MO diagram of simple polyatomic molecules 15L

3. Coordination chemistry –Werner theory, EAN rule-valence bond theory, structure and magnetic properties, inner and outer sphere complexes-crystal field theory- splitting of d orbitals in ligand environments (octahedral, tetrahedral, square planar, trigonal bipyramidal, square pyramidal, cubic etc.)-tetrahedral distortion, spectrochemical series, Jahn Teller distortion-CFSE-isomerism in coordination compounds, IUPAC nomenclature of coordination compounds.

15L

References:

- 1. Physical Chemistry-A molecular approach by Mcquairee and Simon
- 2. Physical Chemistry by G M Barrow
- 3. Concise Inorganic Chemistry by J D Lee

4. Inorganic Chemistry by Shriven and Atkin

IBT 103T

Mathematics I (30L)

Refreshing course on Sets & symbolic logic, Power functions & polynomials, integration & differentiation, periodic functions and conversion of different co-ordinate system.

Matrices and determinants: addition of matrices, multiplication of scalars, transpose of a matrix, system of linear equations, inverse of a matrix. Eigen values and eigen vectors.

Vector differential calculus: curves, arc length, tangent, curvature, velocity & deceleration, directional derivative, transformation of coordinate systems and vector components, divergence and curl of vector field.

Relations & Functions: Linear, periodic, logarithmic, exponential, Quadratic functions. Mapping & Cartesian product. Their application in Biology.

Partial differential equations: Introduction to partial derivatives & Ordinary Differential Equation of the first order.

Graphical representations: Linear scales, nonlinear scales, Semilogarithmic, triangular, nomography, pictoral presentations

IBT 104-T Plant Animal and microbial world General –

Origin of life: primordial soup, bioelements, biomolecules, importance of water, Cell as the unit of life, development of cell theory, cell types: prokaryotes vs. eukaryotes; from single cell to multi-cellular organism, concept of multi-cellularity, cell-cell interactions- at tissue level, cell organization,

Animal World-

Level and organization in animal kingdom: Major animal groups and their salient features: (at Phylum level for non-chordates to chordates at class level).

Animal adaptation and trends in animal evolution.

Plant World-

Plant forms and classification- Algae, Bryophytes, Pteridophytes, Gymnosperms, and Angiosperms

-Plant forms and anatomy

-Plant reproduction: asexual and sexual, life cycles, and alterations of generation

-Plant evolution (Evolutionary trends like –increase in complexity of sporophyte and reductions in gametophytes, seed development, conducting elements etc.)

Microbial World-

Definition, scope, impact and future of microbiology, beneficial and harmful microbes – food industry, agriculture, medical field 1L

History of Microbiology –Major discoveries and contributions of different scientists (Leewenhoek, Joseph Lister, Robert Koch, Louis Pasteur etc.) 2L

Nutritional classification of microorganisms on the basis of carbon, light: (Photoautotrops, Photoorganotrops, Chemolithotrops (sulfur, hydrogen, iron oxidizers), chemoorganotrophs, nitrogen: (nitrifying, nitrogen fixing, denitrifying microorganisms), oxygen (aerobes, facultative anaerobes, microaerophiles, aerotolerant anaerobes, anaerobes) 3L

Physical factors influencing growth –Temperature (hyperthermophiles, thermophiles, mesophiles, psychotrophs, psychrophiles), pH (acidophiles, neutrophiles, alkaliphiles) Osmotic pressure (extreme, moderate, mild halophiles, osmophiles, xerophiles) 2L

Techniques in microbiology: staining (monochrome, negative, Gram, capsule, endospore, acid fast), media preparation, cultivation, isolation, preservation 3L

Ultrastructure of prokaryotes, flagella, pili, capsules, cell wall, cell membrane, genomes, plasmids, cytoplasmic inclusions, endospores, magnetosomes, carboxysomes, chlorosomes, gas vesicles, Volutin granules. 3L

Introduction to viruses (bacteriophages, plant, animal), Archea (thermophiles, halophiles, methanogens) Fungi, algae, protozoa 1L

10L

10L s: (at

3 Credits 5L

2 credits

IBT-123P Laboratory Exercises in Biology I (Minimally Any 10 practical) 2 credit General:

- 1. Microscopy –simple, compound, dark field, phase contrast and florescence
- 2. Methods for washing glassware and plastic wares and laboratory safety practices
- 3. Study of Instruments Autoclave, hot air oven, Laminar air flow, incubator, mBOD, incubator,
- centrifuge, pH meter, membrane filter and colorimeter, spectrophotometer, balance

Microbiology:

- 1. Concept of sterility, existence of microorganisms and their control
- 2. Media preparation: Liquid, semi-solid, slants, butts, plates, dehydrated, selective, differential
- 3. Enumeration of cell: use of haemocytometer
- 4. Simple staining: Monochrome, negative
- 5. Differential staining: Gram, Capsule and Endospore staining
- 6. Motility Demonstration: Hanging drop preparation, wet mount, dark field microscopy

Plants:

- 1. Plant morphology and anatomy of major plant groups namely
 - Algae, Bryophytes, Pteridophytes, Gymnosperms, and Angiosperms
- 2. Field Trip
- 3. Cell types of plants: Maceration of various tissue explants, Identification of xylem vessels, trachieds, stomata, root hairs etc.

2 Credits

Animals:

IBT 121P

- 1. Membrane permeability
- 2. Osmosis
- 3. Pinoocytosis

Laboratory Exercises in Physics I

- 1. Moment of inertia of disc torsional pendul
- 2. 'g' by resonance pendulum
- 3. Velocity of sound by resonance tube
- 4. Thermal conductivity of insulator Lee's method
- 5. ' γ ' and ' η ' by flat spring spiral
- 6. Total energy conservation (Kinetic Energy + Potential Energy = Constant)

IBT 122 PLaboratory Exercises in Chemistry2 credits(Minimally Any 10 practical)

- 1. Standardization of NaOH with primary standard KHP.
- 2. Determine redox potential of Fe+2/Fe3+ systems by titrating it with standard K2Cr2O7
- 3. To determine hydrolysis constant of aniline hydrochloride by pH measurements.
- 4. Determine pKa of glycine by pH measurements
- 5. Determine the concentration of KCl solution by titrating with standard AgNO3 conductometrically
- 6. Investigate the conductometric titration of strong acid and strong base
- 7. Determination of Jobs method (Ferro salicylate)
- 8. Synthesis of chloro, nitro, nitito pentamino cobalt (III) complexes
- 9. Techniques such as TLC, crystallization, distillation etc.
- 10. Synthesis of potassium tri-oxalate ferrate.

SEMESTER II (21 Credits)

IBT- 201T Applied Physics (Fundamentals of Electronics and Instrumentation)2 Credits Electronics

Analog Electronics

- 1. **Basic electricity and Network Theorems-** Kirchoff's voltage law, Kirchoff's current law, voltage divider formula, superposition theorem and examples, Thevenin's theorem, Norton's theorem and examples, Maximum power transfer theorem and examples.(**5L**)
- 2. Electronic components Active, passive, resistor, thermister, LDR, capacitor, Inductor, transformer, switches, relay types, symbols, applications, working of each. (1L)
- 3. Semiconductor devices –single stage amplifier, i/p, o/p impedence, impedence matching, freq. Response, bandwidth, fidelity, power amplifiers (2L)
- 4. **Power supplies** AC to DC conversion, rectifiers, filters, designing, highpass, low pass, regulator series (block dia.), shunt zener working, zener breakdown, avalanche reakdown.
- 5. **OPAMP-** Differential amplifiers, Inv., Ninv.inputs, opamp characteristics, application-adder, subtractor, integrator, differentiator. (3L)

Digital Electronics

- 1. Number systems- decimal no. System, binary no system, hexadecimal, octal, inter-conversions, binary codes, binary addition, subtraction. (4L)
- Logic gates-basic gates, derived gates, universal building blocks, Boolean algebra, truth tables, proving logical equations, examples, De Morgan's theorem, Half adder, Full adder, Binary adder, subtractor, (5L)
- 3. Combinational logic-
- 4. Counters- multivibrators, RS flip-flop, JK flip-flop, T flip-flop, 4-bit binary counter, decade counter, up-down counter, shift registers and applications. (2L)

Instrumentation (15)

- 1. **Transducers -** primary & secondary transducers, temperature, pressure, displacement, velocity transducers. (3)
- 2. ADCs and DACs Digital to analog convertors, analog to digital convertors, examples (3)
- 3. Instrumentation systems –data acquisition systems

Reference Books:

- 1. Electronic Principles by Malvino, Bates
- 2. Digital principles and Applications by Leach, Malvina, Saha

References:

- 1. University Physics by F W Sears
- 2. Fundamentals of physics by Haliday, Resnick and Walke
- 3. Lecture series by Feynman.
- 4. Physics by Catnell and Johnson
- 5. Principles of Physics : H.C. Verma

IBT 202T Applied Chemistry

1. Adsorption, chemisorption, adsorption isotherms

2. Thermodynamics – second law of thermodynamics, entropy, spontaneous change, free energy, enthalpy, adiabatic demagnetization, reactions at equilibrium, interpretation of equilibrium constants, acid and bases, solubility equilibria, biological activity, thermodynamics of ATP

3. Electrochemistry – electrochemical cells, half cell reactions, reduction potentials, the

electrochemical series, thermodynamic functions from cell potential measurements, liquid junction potentials, Debye Huckel Theory, over voltage

References:

1. Physical Chemistry by P W Atkins

9

2credits

(3L)

(1L)

(3)

- 2. Physical Chemistry by Venullapalli
- 3 Physical Chemistry for life sciences and biosciences by R Chang
- 4. Organic Chemistry by R T Morrison and R N Boyd (2006)
- 5. Organic Chemistry by P Y Bruice (2006)

IBT 207 T-Statistics (30L)

Frequency distribution and associated measures

Probability Theory, Sample mean, Sample variance, mean and variance of a distribution, random numbers, random sampling.

Probability Distributions: Applications of probability and standard distributions, estimation, standard error and confidence interval, t-tests, F-test, single tail & double tail.

Confidence intervals, goodness of fit, pairs of measurements, fitting straight lines, curves, polynomials etc. Test of hypothesis associated with correlation and regression.

References:

- 1. Biostsistics:: A foundation for analysis in Health Science. 7 th Edition Wayne Daniel
- 2. Fundamental and University Mathematics by Colin McGregor
- 3. Statistical methods in Biology by Norman Bailey
- 4. Biostatistics by Striecke
- 5. Mathematical models in biology by Allama
- 6. Engineering Mathematics- M-1, M-2, M-3
- 7. Advanced Engineering Mathematics : Kreyzig

8.Introduction to Mathematics for Life Scientists by Edward Batschalet, Springer

9. Mathematics for the Biological Sciences by J.C. Acharya and R. Lardner, Prentice Hall

IBT 108 T+P Introduction to Computer Science & Programming Languages 2 credits

Theory (1 credit)

Introduction (2L)

History and generation of computers (2L)

Structure of a computer (2L)

Computer operation: keyboard, mouse, screen, printer, and other I/O devices (2L)

Operating systems: introduction e.g., Linux, Windows (2L)

System handling, system commands, introduction to computer languages and utilities (6L)

File formats and directory structure (2L)

Data organization on a computer (2L)

Connecting and Communicating Online: The Internet, Websites, and Media (3L)

Programs and Apps: Productivity, Graphics, Security and Work (2L)

Digital Security, Ethics, and Privacy: Threats, Issues, and Defenses (3L)

Glossary of important terms (2L)

Practical (1 credit)

Hands-On experience and regular usage: Tutorials (Typing, Windows 98/XP, Internet, Unix (LINUX), applications and utilities of Windows 98/XP, Browsers (I.E., Netscape) (1P)

Internet, Search Engines, using E-Mail/Web mail, ftp (1P)

Basic Unix commands (1P)

Word Processing (Microsoft Word): Creating, Saving & Opening a document, Editing, Inserting, Deleting, Formatting, Moving & Copying Text, Find & Replace, Spell Checker & Grammar Checker (Thesaurus), Document Enhancement (Borders, Shading, Header, Footer), Printing document (Page layout, Margins), Introduction to the use of Wizards & Templates, Working with Graphics (Word Art) (1P)

Working with Tables & Charts, Inserting Files (Pictures, Databases, Spreadsheets)

Spreadsheet Applications (Microsoft Excel): Worksheet Basics (Entering information in a worksheet, Saving & Opening a worksheet, Editing, Copying & Moving data, Inserting, Deleting & Moving Columns & Rows, Clearing Cells & Formatting cells), Working with workbooks, Working with formulae and functions, Printing worksheets, An introduction

to the use of advanced spreadsheet concepts, Database Management (Sorting records, Finding records, Adding & Deleting records, Filtering records in a worksheet), Working with Macros, Creating and using multiple worksheets (1P)

2 credits

Creation of Computer Presentations with graphics (Microsoft Power Point): Creation of slides, Rapid Presentation design using wizards, Inserting graphs & charts Action buttons, Transitions, Build and Animation effects (1P)

References:

- 1. Introduction to Computers by A. Leon and M. Leon, Vikas Publishing House.
- 2. Fundamentals of Computers by Rajaraman V., PHI.
- 3. Computers Today by Sanders D. H., McGraw Hill.
- 4. Computer Architecture and Organizations by J. P. Hayes, Mc Graw Hill.
- 5. Modern Digital Electronics by R. P. Jain, Tata Mc Graw Hill.
- 6. Computer Network by Andrew S. Tanenbaum, PHI.
- 7. Inter Networking With TCP/IP: Principles, Protocol And Architecture by D.E. CornerVol1,

References:

- 1. Introduction to Computers by A. Leon and M. Leon, Vikas Publishing House.
- 2. Fundamentals of Computers by Rajaraman V., PHI.
- 3. Computers Today by Sanders D. H., McGraw Hill.
- 4. Computer Architecture and Organizations by J. P. Hayes, Mc Graw Hill.
- 5. Modern Digital Electronics by R. P. Jain, Tata Mc Graw Hill.
- 6. Computer Network by Andrew S. Tanenbaum, PHI.

7. Inter Networking With TCP/IP: Principles, Protocol And Architecture by D.E. CornerVol1,		
IBT 20	IBT 206 T Biomolecules	
1.	Introduction /overview	2L
2.	Water and Intermolecular Forces	2L
3.	Thermodynamics in Biochemistry	2L
4.	pH, acids bases and Buffers	3L
5.	Amino Acids	2L
6.	Peptide Bonds and Introduction to Proteins	3L
7.	Sugars and Polysaccharides	2L
8.	Glycoproteins and Proteoglycans	2L
9.	Lipids	3L
10.	Nucleosides and Nucleotides	2L
11.	Structure of Nucleic Acids	3L
12. Vitamins, Coenzymes and other small molecules		4L
Refere	nce	
1. Garr	ett & Grisham, Biochemistry, Saunders Publishing,	
2. Voet and Voet. Biochemistry, second edition, Prentice-Hall,		
3. Lehr	ninger, Nelson and Cox. Principles of Biochemistry	

- 4. Zubay. Biochemistry
- 5. Mathews, van Holde and Ahern. Biochemistry
- 6. Stryer, Biochemistry

IBT 212TIntroduction to Microbiology and Genetics2creditProkaryotic cell cycle: Binary fission, multi-fork replication, role of FtsZ, MreB, Z ring divisome,
addiction modules for plasmid transfer to progeny4LPopulation growth: Growth phases-Generation time, Kinetics of growth4LGrowth patterns: Synchronous, Batch, Continuous, Diauxic4LControl of Microorganisms: Sterilization, disinfection, cidal, static agents2L

Control of microbial growth by physical methods: Dry heat, moist heat, filtration, radiation (mode of action, applications) 4L Chemical control –dyes, alcohol, acid, alkali, halogen, heavy metals, phenol, phenol derivatives, formaldehyde, ethylene oxide, detergents (mode of action, applications) 3L Control of Pathogens and chemotherapy: History and development of chemotherapy, principal groups of antibacterial agents, and mechanism of action, drug resistance: origin, mechanisms, and transmission, antiviral and antifungal agents. 6L

Reference:

1. Black, J.G. (2005) Microbiology Principles and Explorations 6th edition John Wiley and Sons Inc. 2.Pelczar M.J.Jr. Chan E.C.S., Kreig (2006) Microbiology 5 th edition Tata McGraw Hill.

3.Perry, J.J., Staley, J.T., Lory, S., (2002) Microbial life Sinauer Associates Publishers.

4. Schaechter, M., Ingraham J.L., Neidhardt, F. (2006) Microbe. ASM press

5.Madigan, M.T., Martinc J.M., Parker, J.Brock Biology of Microorganisms (Pearson prentice Hall) 2 credits

IBT 221 P Laboratory Exercises in Physics II

(Minimally Any 10 practical)

- 1. Determination of frequency of A.C Mains using sonometer box and LCR circuit- Series and Parallel resonance
- 2. Force acting on a current carrying conductor in a magnetic field
- 3. Verifying Biot Savart law of Magnetism & Tangent law of magnetism
- 4. Understanding Mutual Inductance using transformer
- 5. Surface tension Jaeger's method (temperature variation)
- 6. Viscosity and Reynolds number of liquid by continuous flow method

IBT 222 P Laboratory Exercises in Chemistry II

(Minimally Any 10 practical)

1. Kinetics-order reaction

2. Determine simultaneously dichromate and permanganate ions in the given acid solution by colorimetric measurements

- 3. Study the hydrolysis of an ester in presence of hydrochloric acid
- 4. Determine the viscocity of a given liquid by Ostwald's viscometer
- 5. Potentiometry Halide estimation of mixtures
- 6. To study the absorption of acetic acidon activated charcoal
- 7. Estimation of Van't Hoff factor
- 8. Solvent extraction -8 hvdroxy quinoline
- 9. Preparation of 2, 4 Dinitrophenylhydrazine derivatives of carbonyl compounds

IBT 223 P Laboratory Exercises in Biology II (Minimally Any 10 practical)

I –Biomolecules (2C)

- 1. Measurement of pH
- 2. Estimation of carbohydrates -reducing /Non-reducing sugars
- 3. Estimation of proteins
- 4. Molar extinction coefficient of molecules
- 5. Extraction and estimation of lipids

II – Microbiology (2 C)

1. Growth curve of Escherichia coli by turbidometric method, calculation of specific growth rate and generation time 1P

IBT-225 P Practical in Statistics	1 credit
10. Determination of Minimal inhibitory concentration (MIC) by microtitre plate assay	1P
9. Determination of antimicrobial activity by paper disc and well diffusion method	1P
8. Determination of thermal death rate of Escherichia coli and Bacillus	1P
7. Determination of thermal death rate of Escherichia coli and Bacillus	1P
6. Slide culture technique for morphological characterization of fungi	1P
5. Cultivation of fungi: on Saborauds, Czapek Dox, Potato Dextrose agar	1P
4. Pour plate, Total viable count	1P
3. Spread plate technique	1P
2. Isolation of bacteria by streaking	1P

2credits

2 credits

- 1. Sampling technique (simple random sampling, stratified sampling, probability proportional sampling, sampling procedures). Introduction to R
- 2. Model sampling from continuous distribution (such as uniform, exponential and normal)
- 3. Test of significance.

T test, F test,

- Pair T test,
- Test of proportionality
- 4. Fitting of straight lines, curves (growth curve models, polynomials). Test of significance associated with correlation and regression
- 5. Goodness of fit test. (Distribution fitting and model validation)

Note:

a) Each practical duration -3 hours

b) The practical problem sheets are to be prepared in conclusion with life science teacher/ instructions.

Elective courses

Syllabus: E01- Introduction to Laboratory Instrumentation and Safety (T+P) 2 credit Theory (1credit=15L)

- 1. Laboratory facilities in biotechnology (1L)
- 2. Handling and Use of Physics laboratory (1L)
- 3. Handling and Use of Chemistry laboratory (1L)
- 4. Microbiology laboratory (2L)
- 5. Molecular biology laboratory (2L)
- 6. Animal and plant cell culture laboratory (2L)
- 7. High end instrumentation (1L)
- 8. Laboratory operations and SOP (1L)
- 9. Hazards in laboratories (1L)
- 10. Laboratory safety measures and safe disposal of laboratory wastes(1L)
- 11. How to handle emergency conditions in the laboratory? (1L)
- 12. Personal and protective equipments and measures (1L)

Practical (1 credit)

- 1. Handling of glass and digital Pipettes
- 2. Handling of weighing machine
- 3. pH measurement through litmus paper and pH machine
- 4. Handling of tabletop centrifugal devices
- 5. Use of laminar flow and bio safety cabinet
- 6. Use of autoclaves
- 7. Using small laboratory equipments like stirrer, vortex, sonicator, nanodrop, waterbath, incubators, shakers
- 8. Operations and Maintenance of deep freezers
- 9. Storage and handling of general chemicals/acids, solvents
- 10. Safe disposal of laboratory wastes
- 11. Use of fume hood and personal safety measures
- 12. Laboratory safety demonstrations, fire extinguishers and first aid

Syllabus: E02: Introduction to Ecosystems and Ethology (T+P) 2 credit

Theory (1credit)

- 1. Ecology (bio network, fundamental operations, energy flow, food-chain, food-webs including trophic levels, ecological niche, abiotic and biotic factors, characteristics and regulation of population, ecological succession) (2L)
- 2. Types of Ecosystems and its components (1L)
- 3. Community, ecosystem and biomes (1L)
- 4. Ecosystem services and the economics of ecosystems (1L)
- 5. Ecological pollution (the sources, types and control of environmental pollution) (1L)
- 6. Conservation (1L)
- 7. Population dynamics and regulation (2L)

- 8. Behaviour ecology (1L)
- 9. Basic ethological concept (1L)
- 10. External stimuli (1L)
- 11. Temporal and hierarchical organization of behaviour (2L)
- 12. Case studies (1L)

Practical (1 credit)

- 1. Methods to study ecosystems
- 2. Study of local ecosystem(s)
- 3. Study of the abiotic components of ecosystems (water, soil, air)
- 4. Identification and data collection of plant/insect/amphibian/reptile/bird species in a nearby area (checklists)
- 5. Monitoring the monthly changes in the biotic and abiotic components of an ecosystem
- 6. Identification of threats to the ecosystem

IBT 208 (T+P) Advances in Computational Programming 2 Credits Module 2	Lectures
Overview of the Programming Languages:	2
Evolution of programming languages:	
What is C Language, Why C Language, Future in C Language, structured programming, the	
compilation process, object code, source code, interpreters, linkers, loaders, fundamentals	
of algorithms, flow charts	
C Language Fundamentals:	4
Data Type, Constants & Variables(T+P)	[3-T][1-P]
What is Data Types in C Language with practical	
Integers, long and short in C Language with practical	
Integers, signed and unsigned in C Language with practical	
Chars, signed and unsigned in C Language with practical	
Floats and Doubles in C Language with practical	
Constants, Variables, Keywords in C with practical	
How to get input from user(scanf()) with practical	
How to display output to user(prinf()) with practical	
Decision making and looping of c language(T+P)	4
IF-Else Statement in C Language with practical	[2-T][2-P]
for Loop in C Language with practical	
While Loop in C Language with practical	
Do-While Loop in C Language with practical	
Break in C Language with practical	
Continue in C Language with practical	
Switch in C Language with practical	
C Functions (T+P)	6
User defined and standard functions, Formal and Actual arguments, Functions category,	[4-T][2-P]
function prototypes, parameter passing, Call-by-value, Call-by-reference, Recursion,	
Storage Classes	
Arrays and Strings	5
One dimensional Array, Multidimensional Array declaration and their applications, String	[3-T][2-P]
Manipulation	
Pointers	6
Pointer variable and its importance, passing parameters by reference, pointer to pointer,	[4-T][2-P]
pointers to functions, pointers to array, dynamic memory allocation	
Structures, Unions	3[2-T][1-T]
Declaration of structures, declaration of unions, pointer to structure & unions	
Introduction : linked list	[1 - T]
IBI 209 (1) Principles and advances in Molecular Biology 2 Credits	T /
Module Module 1	Lectures
Mindule I	5
Historical of molecular biology and Central Dogma	5
DNA and KNA as genetic material	1
DNA replication	2
Transcription	2
Translation	2
Mutation, DNA damage and repair	3
Module II	
DNA cloning and protein expression in bacteria, yeast, insect, plant and mammalian	5
platform	
Genetic Complementation and gene expression regulation	3

Sequencing of DNA, RNA and protein molecule Techniques for detection of DNA, RNA and protein (Southern, Northern, Western blotting) and <i>in situ</i> characterization	3 4
References: 1. Genes VIII : Benjamin Lewin 2. Molecular Biology of Gene: Watson et al. 3. Cell & Molecular Biology: Lodish et al. IBT-305T Biomathematics & Biostatistics 2 Credits	
Module	Lectures
Mathematics Exactness and integrating factors, variation of parameters. Ordinary linear differential equations of n-th order, solution of homogeneous and non-homogeneous equations, operator method, method of undetermined coefficients and variation of parameters Eigen vectors systems of linear differential equations Sequence of series, power series methods for linear ordinary differential equations Laplace transform and its applications, Fourier series and Fourier transform and their applications Partial differential equations: models in chemical kinetics and physiology	15
Introduction to solution techniques such as variable separation, product method and Laplace Transform method	
Statistics Frequency distributions and associated statistical measures Multivariate analysis. Multiple linear regressions, Factor analysis. Partial Least Square, Principle Component analysis Cluster Analysis (a) Nearest neighbor search (b)Search using stem numbers (c)Search using text signatures	15
 <i>References:</i> 1. Applied Multivariate analysis by Wicherman & Johnson. 2. Biostsistics: A foundation for analysis in Health Science. 7 th Edition Wayne Daniel 3. Fundamental and University Mathematics by Colin McGregor 4. Statistical methods in Biology by Norman Bailey 5. Biostatistics by Striecke 6. Mathematical models in biology by Allama 7. Introduction to Mathematics for Life Scientists by Edward Batschalet, Springer 8. Mathematics for the Biological Sciences by J.C. Acharya and R. Lardner, Prentice Hall 	
IBT 306T Microbial, Plant & Animal Biodiversity 2 Credits	Lacturas
General Topics Introduction to Biodiversity Taxonomy, Species diversity with respect to structural characters, Population concept (biological species concept) Ecological perspective of biodiversity: Interaction between habitat and organism Genetic perspective of biodiversity: Genetic variation amongst the members of a population or in populations throughout the distribution range Criteria for taxonomy: Kingdoms, Binomial, Hierarchies Morphological, Biochemical and	6
Molecular Criteria Magnitude of Biodiversity- number of species – plant, animals and microbes, range of distribution	
Biomes of the world, Ecosystems: Types- freshwater, marine, terrestrial, forest etc., abiotic and abiotic factors	
Biodiversity hotspots – concept, listing, hotspots of World, India, Western Ghats-	

Case study Change in biodiversity over time and space, threats to biodiversity, Environmental pressures, Causes (natural/manmade) Conservation of biodiversity Strategies- laws and legislation, public awareness Methods- <i>ex situ- in vitro, ex vitro, in situ</i> Restoration ecology	
Biodiversity informatics Microbial diversity Microbial ecosystems and effect of environmental factors, Microbiology of specific	8 1
environments Plant microbe interactions Animal microbe interactions Specialized groups of microbes Plant diversity (taxonomy and ecology) Primitive and modern systems of plant classification, Phyto geography, phyto diversity, species diversity, ecosystem diversity, molecular diversity, crop/agricultural diversity Chemotypes, ecotypes and cytotypes – Case study <i>Withinia somenifera</i> Western Ghats – A plant diversity case study Carnivorous, parasitic, epiphytic plants Some important orders and families of higher plants Vegetation succession in ecosystems, climax Plants adapted to special habitat, Ecophysiology- plant responses to stress, altitude, and salinity, Crop ecosystems Animal diversity Animal kingdom, Fundamentals of animal systematics and methodology, Molecular sysmatics and DNA Barcoding used in Animal Biodiversity studies, Major groups in animal kingdom, Biome-wise Zoogeographical distribution and adaptative features, Factors implicated to influence animal biodiversity; Inter and Intra – specific relationships, Concept of animal conservations	2 2 3 8
 <i>References:</i> 1. Zoology 5th edition, Miller S.A. and Harley J.B. (2002) McGraw Hill Publ 2. Campbell Biology - 10th edition, Reece J.B. et.al (2013) Benjamin & Cummings Publ. 3. Principles and practices of Animal taxonomy - Kapoor V.C. (1998) Science Publ. 4. Biological Diversity -Magurran A.E. (2011) Oxford University Press 5. Principles of Microbial Diversity Brown JW (2015) ASM Press 6. Brock Biology of Microorganisms (2017) Madigan MT, Martinko JM, Bender KS, Buck Pearson 	skley DH.
IBT 321 Stereochemistry (T+P) 2 Credits Theory Symmetry properties of organic compounds, Chirality of organic compounds, chiral centre, configuration of chiral centre, enantiomerism, diastereomerism, pseudo-asymmetric carbon Homotopic and heterotopic ligands and faces Stereochemistry of Natural products Conformational concepts of acyclic molecules, cyclohexane and mono, di-substituted cyclohexane. Effect on physical properties of the molecules	Lectures 2 2 2 2 2

Stereochemistry and drug action

1 Mechanistic and Stereochemical aspects of addition reactions of C-C multiple bonds 3 including allenes, Ionic and free radical additions of halogens, halogen halides, hydration and related addition reactions

Mechanistic and Stereochemical aspects of elimination reactions, E2, E1, E1cb, eliminations 3 15 h Practicals (Any 5)

Introduction to using molecular models

See the spatial arrangements of the atoms in a molecule

Build different models of molecules to understand the geometric isomerism, conformations and absolute configuration

Construct models of molecules in order to observe in three dimensions

Physical properties of enantiomers and diastereomers (melting point/boiling point, density) Polarimeter

- 1. To handle and measure optical rotation of stereoisomer
- 2. Analysis of tartaric acid in wine by polarimetry
- 3. Mutarotation of glucose and Inversion of glucose

Stereochemistry of chemical reactions

- 1. carbonyl reduction for racemic benzoin molecule
- 2. reaction of cyclopentadiene with maleic anhydride
- Resolution of racemic phenethylamine using tartaric acid

Separation of chiral compounds using chromatography/chelation methods

References:

- 1. Organic Chemistry Advances (2001) Carey F.A., Sundberg R.J. (Ed. IV), Part A, Kluwer Academic publishers.
- 2. Stereochemistry of carbon compounds E. L. Eliel.

IBT 322 (P) - Lab experiments in Molecular Biology

2 Credits

- List of Experiments (Any 8)
- 1. Isolation and analysis of Bacterial genomic DNA
- 2. Isolation and analysis of Animal genomic DNA
- 3. Isolation and analysis of Plant genomic DNA
- 4. Isolation and analysis of bacterial plasmid DNA (alkaline lysis method)
- 5. Isolation and analysis of bacterial plasmid DNA (LiCl method)
- 6. Isolation and analysis of bacterial plasmid DNA (STET buffer method)
- 7. Isolation and analysis of bacterial plasmid DNA (TELT method)
- 8. Isolation and analysis of plasmid from bacteria by heat lysis method
- 9. Spectroscopic analysis of isolated DNA
- 10. Effect of temperature, pH and impurities on DNA stability (spectroscopic analysis)

IBT 323 (P) - Laboratory Exercises in Biodiversity

2 Credits

- List of Experiments (Any 10) 1. Study the biotic and abiotic components of ecosystems (aquatic/terrestrial)
- 2. Study of plant communities by species area curve method
- 3. Study of plant communities by quadrant method and to determine % Frequency, Density, Abundance, Importance Value Index in protected and disturbed area
- 4. To determine diversity indices (richness, Simpson, Shannon-Wiener) and plant biomass in protected and disturbed area
- 5. To study selected Angiosperm families based on natural system of classification
- 6. Study of invertebrate animals from different soil samples
- 7. Study of zooplanktons from various water bodies
- 8. Study of animal biodiversity on SPPU campus using the transect method
- 9. Study and establishment of bee and/or ant colony
- 10. Study of physiochemical properties of water samples
- 11. Field visit to study plant, animal and microbial biodiversity (for study of various habitat types, niche, ecosystems, associations and degradation)
- 12. Introduction to biodiversity analysis software
- 13. Isolation and characterization of photosynthetic microorganisms
- 14. Isolation of microbes from aquatic and terrestrial environments
- 15. Isolation of marine microbes

Elective Courses: IBT-EL3T Advanced Biostatistics

Theory Modules	Lectures
UNIT I: Design of Experiments and Analysis of Variance (ANOVA)	15
Basic principles of experimental designs, One-way ANOVA, Completely randomized designs,	
Post-hoc pairwise testing, Two-way ANOVA, Randomized block designs, Analysis of	
Covariance	
UNIT II: Regression Modeling and Model Selection	15
Causal associations among variables, Evaluating the dependence of a variable on independent	
variables, Principles and assumptions of regression modeling, Least-square estimation	
Simple and multiple regressions, Determining the subset of important variables, Forward	
selection and backward elimination methods, model diagnostics, residual analysis, model	
evaluation	
UNIT III: Multivariate Analysis	15
Multivariate data, Exploratory analysis and multivariate plots, Principal component analysis,	
Cluster analysis by hierarchical and non-hierarchical methods	

References:

- 1. Bryan F. J. Manly, Jorge A. Navarro Alberto (2016). *Multivariate Statistical Methods: A Primer* (4th Edition), Chapman & Hall/CRC
- 2. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer
- 3. Jonson, R. A. and Wichern, D. W. (2013). Applied Multivariate Statistical Analysis. PHI
- 4. Montgomery, D. C., Peck, E. A. and Vining, G. G. (2003). Introduction to Linear Regression Analysis, Wiley.
- 5. Montgomery, D. C., (2010). Design and Analysis of Experiments, Fifth Edition, Wiley.
- 6. Ross, S. M. (2014). Introduction to Probability and Statistics for Engineers and Scientists. Academic Press.
- 7. Shaefer, S. J. and Theodore, L. (2007). Probability and Statistics Applications for Environmental Science, CRC Press
- 8. Walpole, R. E., Myers, R. H., Myers, S. L. and Ye, K. (2012). *Probability and Statistics for Engineers and Scientists*, 9th Edition, Prentice Hall.
- 9. Wayne Daniel (1991). Biostatistics: A foundation for analysis in Health Science. Wiley.

IB	T-EL4T+P Introduction to Analytical Techniques and Applications 3 credits	
	Theory Module	Lectures
1.	Homogenization and Sonication techniques	2
2.	Filtration and dialysis techniques	3
3.	Centrifugation techniques	2
4.	Viscosity	1
5.	Electrochemical cell, pH and electrodes	2
6.	Chromatography principles: Paper, TLC, Gel filtration, affinity chromatography,	5
	Adsorption chromatography	

Practical Module (Any 8-10)

- 1. Cell disruption by homogenization
- 2. Cell disruption by probe sonicator
- 3. Centrifugation
- 4. Thin Layer Chromatography
- 5. 1D / 2D Paper Chromatography
- 6. Column packing Determination of loading capacity of column
- 7. Affinity chromatography

8. 9. 10.	Dialysis / Membrane filtration Viscosity measurement Gel filtration chromatography		
Rej	 ferences: Biophysical Chemistry Friedfielder David Analytical Biochemistry by David Holme and Hazel Peck. Bioanalytical Chemistry (Susan R. Mikkelsen and Eduardo Cortón, Wiley-Inter 	rscience, 2	2004
IB '	T-EL5T+P Practices in Ethics	3Cred	its 21
1)	History of ethics practices		21
	Current status of bioethics		
2)]	Ethics committee		4L
	 Institutional Ethics Committee (IEC) Institutional Committee for Stem Cell Research (IC-SCR) Institutional Animal Ethics Committee (IAEC) Institutional Biosafety Committee (IBSC) 		
3)	Good Research Practices		3L
	 Data acquisition, handling, analysis and storage. Malpractices related to data fabrication and manipulation. Plagiarism 		
4)]	Patents and Intellectual property rights		2L
5)]	Laws regarding research practices		2L
6)	Guidelines for Biosafety (Biosafety Levels and Classes of Biosafety cabinets)	2L	
7)]	Handling of biohazard and radioactive materials and procedure for their disposal	2L	
8)]	Human cloning and human bioethics	2L	
Pra	actical:		
1)	Good Research Practices		
	Data acquisition, handling, analysis and storage.Plagiarism	3P	1P
2)	Guidelines for Biosafety (Biosafety Levels and Classes of Biosafety cabinets)	2P	
3)]	Handling of biohazard and radioactive materials and procedure for their disposal	2P	
Re ava linl	ference: Guidelines and Handbook for IBSCs contains the entire detailsabout IBSCs ailable at following k: <u>http://dbtbiosafety.nic.in/Files/CD_IBSC/Files/Guidelines%20_Handbook_2011.p</u>	, which is df	S

Semester IV

IBT 204T English 3 Credits	
Module	Lectures
Module I	20
Scientific method: Hypothesis, theory, law; Design of experiment; Inductive & deductive reasoning	2
Types of presentation: Oral, poster, written, audio-visual	1
Effective writing. Preparing the manuscript. The IMRAD format	1
Title, byline; Abstract and Summary; Keywords	1
Introduction: Defining the problem; Literature survey; Justification of study	1
Materials and Methods: Contents, sources, procedures, techniques, reproducibility	2
Units of measurement, Abbreviations, Laboratory record book Results: Text; Presentation of qualitative and quantitative data	2
Discussion: Components and sequence. Conclusions and significance. Implications for further study	1
Acknowledgements. Reference citation systems. Sources of references: Journals, books, bibliographies, abstracting journals; Databases	2
Preparing and submitting the manuscript; its acceptance & rejection, Plagiarism	3
Biodala, Curriculum vilae, Resume	2
Module II	5 10
Language as a communication tool relationships among reading writing hearing and	10
speaking	
Organization of English language: sentence structure, vocabulary, word formation, basic grammar, Syntax, context, paragraphs, paraphrase, précis	

Spoken English: pronunciation, diphthong, accent, clarity, speed, punctuation, simplicity and syntax

Common errors in written and spoken presentation; tautology, double negatives and double positives, sequence, tenses

References:

- 1. Barrass R (2002): Scientists Must Write. Edn. 2. Routledge, Oxon, UK.
- 2. Ebel HF, C Bliefert & WE Russey (2004): The Art of Scientific Writing: From student reports to professional publications in chemistry and related fields. Edn. 2. Wiley-VCH, Weinheim, Germany.
- 3. Gastel BA & Day RA (2016): How to Write and Publish a Scientific Paper. Edn. 8. Praeger Publishers Inc., USA.
- 4. Goodman NW & MB Edwards (2014): Medical Writing: A Prescription for Clarity. Edn. 4. Cambridge University Press, Cambridge, UK.
- 5. Gurumani N (2010): Scientific Thesis Writing and Paper Presentation. MJP Publishers, Chennai.
- 6. Fisher E & R Thompson (2014): Enjoy Writing your Science Thesis or Dissertation! Edn. 2. Imperial College Press, London, UK.
- 7. Hofmann, A.H. (2016): Scientific Writing and Communication: Papers, proposals and presentations. Edn. 3. Oxford University Press, Oxford, UK.
- 8. Mathews JR & RW Mathews (2014): Successful Scientific Writing: A step-by-step guide for the biological and medical sciences. Edn. 4. Cambridge University Press, Cambridge, UK.
- 9. McMillan VE (2012): Writing Papers in the Biological Sciences. Edn. 5. Bedford Books/ St Martin's, Boston, MA, USA.
- 10. Pechenik JA (2016): A Short Guide to Writing about Biology. Edn. 9. Pearson Education, Harlow, England.

11. Russey, WE, HF Ebel & C Bliefert (2006): How to Write a Successful Science Thesis. Wiley-VCH, Weinheim, Germany.

IBT 205T Cellular Basis of Structure and Function in Biology 2 credits

Module	Lectures
Ultra structure of plant and animal cell	2
Subcellular organelles (Endoplasmic reticulum, Plasma membrane, mitochondria,	8
chloroplasts, vacuoles, perioxisomes, golgi, lysosomes, nucleus); Origin of organelles	
Extra cellular matrix, Plant cell walls, plasmodesmata	2
Movement within the endomembrane system, Cytoplasmic structure	2
Ribosomes and protein	2
Cytoskeleton and its functioning; actin and microfilament, tubulin and microtubule,	4
intermediate filaments. Differences in the cytoskeletons in plant and animal cells	
Cell divisions and cell cycle, key enzymes regulating cell divisions, regulation of cell cycle	4
in plants and animals	
Transport -simple diffusion, facilitated diffusion, active transport, exocytosis and	2
endocytosis, nuclear transport	
Signal transduction- electrical signals, messengers and receptors	4

Reference:

1. https://www.sciencedirect.com/book/9780123742339/plant-cell-biology

IBT 307T Biochemical & Biophysical Techniques 2credits

Module	Lectures
Principles, Applications of UV-Visible, fluorescence (including FRET & Anisotropy), CD	8
and ORD, ESR, Dynamic Light Scattering, Raman Spectroscopy, Mass spectroscopy	
Surface plasmon response (SPR)	1
Isothermal titration calorimetry (ITC)	1
Microscale thermophoresis	2
Microscopy Techniques	10
Principle and Application of Electrophoresis	3
Advanced column chromatography and Chromatographic calculations	4
Surface tension and contact angle measurement	1

References:

- 1. Bioanalytical Chemistry (Susan R. Mikkelsen and Eduardo Cortón, Wiley-Interscience, 2004; ISBN 0-471-54447-7.
- 2. Biophysical Chemistryby David Friedfielder.

IBT 401T Modern Physics I & II

Classical Statistical Physics -

Temperature and measurement, Boltzmann distribution, ensemble, statistical equilibrium, definition of statistical entropy, concept of entropy as applied to biological systems, relation with the information process and spontaneous reactions. (No rigorous mathematical proofs but concepts should have been cleared)

Module

Nuclear Physics -

Structure of Nucleus, Binding energy curves of various elements, fission, fusion, effects of nuclear radiation, optical, microwave radiation, absorption, penetration, energy density, biological half life, interaction of radiation with living matter, isotopes used in biology and medicines. (No rigorous mathematical proofs but concepts should have been cleared) Solid State Physics -

2 Credits

Lectures

Types of solids, crystals structures, conductivity, diffusion, types of bonding, electronic structure of solids, x-ray diffraction, Introduction to the diffraction techniques as applied to the structure determination of the biological molecules. (There are no proofs in this so can be continued)

References:

- 1. Fundamentals of Optics by Francis Jenkins and Harvey White.
- 2. Optics, Principles and Applications by K K Sharma.
- 3. Optics by Ghatak.
- 4. Principles of Optics by M Born and E Wolf.

IBT 403T Spectroscopy of Biomolecules 2	2 Credits
Module	Lectures
Ultraviolet-visible spectroscopy, solvent effects, Woodward rules	4
Infra-red spectroscopy, infrared absorption bands, shapes of absorption bands and of absorption bands	1 intensity 6
Mass spectrometry, mass spectrum, fragmentation patterns, isotopes in mass spectr	cometry 6
Nuclear Magnetic Resonance, PMR, FT-NMR, chemical shift, position of signals of signals, diamagnetic anisotropy, CMR spectra, structure elucidation	s, splitting 14

References:

- 1. Spectrometric Identification of Organic compounds by R M Silverstein and F X Webster, Sixth edition (2002), Wiley.
- 2. Introduction to Spectroscopy by D Pavia, G Lampman, G Kriz, Second edition (1996), Saunders Golden Sunburst Series.
- 3. Spectrometric Identification of Organic compounds by R M Silverstein and F X Webster, Sixth edition (2002).
- 4. Introduction to Spectroscopy by D Pavia, G Lampman, G Kriz, Second edition (1996).

IBT 405 (T) - Plant and Animal Physiology 2	Credits
Module	Lectures
Plant physiology	15
Transport of water, ions, solute and metabolites in plants, long and short of water balance	istance transport, 2
Mineral Nutrition - Effect of soil pH on mineral availability, uptake & minerals, their physiological role	assimilation of 1
Translocation in phloem, Source sink relationships in plants	2
Leaf transpiration and stomatal physiology	
Biology of nitrogen fixation	
Photosynthesis and respiration in plants –	2
Photosynthesis – Photosynthetic pigments, organization of photos transport system in thylakoid membranes	ynthetic electron 2
Charge separation and electron transport, fluorescence and photoc evolution, NAPD reduction, photophosphorylation	emistry, oxygen 1 2
Rubisco – Natures carbon dioxide fixing enzyme and Calvin cycle, Ph CO ₂ concentrating mechanisms in C4 and CAM plants, Evolution ecology of in photosynthesis	otorespiration nary trends and
Novel applications of artificial photosynthesis artificial leaf and enzy	nes
Senescence and PCD	
Plant growth hormones – Structure, biosynthesis and metabolism of at gibberellins, abscisic acid and ethylene. Physiological role of hormones Photoreceptors in plants and their physiological roles; Photoperiodis	xins, cytokinins, 3 n, vernalization,
Circadian rhythm, Tropic and nastic movements in plants	
Secondary metabolites - Terpenoids, phenolics, alkaloids. Major seco	ndary metabolite

synthesis pathways in plants. Role of secondary metabolites	
Animal physiology	15
Introduction to Animal Physiology – overview, background, systems of study, physiology	2
fundamentals, applications to medicine and scientific research	
Fundamentals of Nutrition – basics of heterotrophic nutrition, food pyramid	
Fundamentals of Digestion – different digestive systems and processes	
The Animal Microbiome -microbial populations that inhabit animals, impact on nutrition	1
and digestion, relationship to health and disease states	
Energy Metabolism in the context of Nutrition, Digestion, and the Animal Microbiome – a	2
comprehensive understanding the complex relationships and multifactorial elements such as	
genetic composition, microbiome, environmental factors, that impact nutrition, digestion	
and energy metabolism	
Neural and Endocrine Control I - sensory and effector networks, response systems,	1
circadian rhythm	
Neural and Endocrine Control II -overview of endocrine systems, hormonal control of	1
different behaviors	
Muscular system - Physiology of skeletal muscle movement, role of smooth muscle in	1
physiological functions	
Thermoregulation and Osmoregulation I - core body temperature, insulation, heat transfer,	1
hibernation	
Thermoregulation and Osmoregulation II - osmotic pressure, dehydration, cooling	1
mechanisms	
Circulation - vascular and cardiac systems, circulation pathways, regulation of circulation	2
Respiration - ventilation, external and internal respiration, cellular respiration	2
Excretion - metabolic waste products, elimination of waste	1

References:

Plant physiology

- 1. Atwell, BJ, Kriedemann, PE & Turnbull, GN 1999, Plants in Action, Macmillian, New York
- 2. Salisbury, FB & Ross, EW 1992, Plant Physiology, 4th edn, Wadsworth Pub., Belmont.
- 3. Duca, Maria, 2015, Plant physiology, Cham, New York
- 4. Hopkins 2009
- 5. Teiz and Zigar Plant Physiology

Animal Physiology

- 1. Hill, R. W., G. A. Wyse, and M. Anderson. 2016. Animal Physiology, 4th Edition. Sinauer Associates. Sunderland, MA.
- 2. One health relationships between human, animal, and environmental microbiomes: A minireview. Trinh P, et al. Front Public Health 2018.
- 3. Katz PS. Neural mechanisms underlying the evolvability of behavior. Phil Trans R Soc B 2011.
- 4. Schlinger BA. Hormonal control of behavior: novel mechanisms and model organisms. J Comparative Physiology 2018.
- 5. Central osmoregulatory influences on thermoregulation. McKinley MJ, et al. Clin Exp Pharmacol Physiol 2008.
- 6. Integrating competing demands of Osmoregulatory and Thermoregulatory homeostasis. Mc Kinley MJ, et al. Physiology 2018.

Recommended scientific journals:

Plant physiology

- 1. New Phytologist
- 2. Journal of Experimental Botany
- 3. Plant Physiology
- 4. Plant Cell and Environment

- 5. Planta
- Functional Plant Biology HortScience

Semester V:

Animal Developmental Biology

1. Logic of the diploid state.

Spermatogenesis- structure of testis, sperm development and differentiation Ovogenesis: structure of ovary, development of the egg of the insect, sea urchin, frog, chicken, human- Logic and logistics.

Structure and contents of the egg cell- maternal RNA, maternal organelles, Morphogens Fertilization: in eggs laid in aquatic conditions and eggs laid in utero- logic and logistics.

- 2. Cell structure and function- cell cycle regulation, plasma membrane, cell to cell junctions, cell motility.
- 3. Gene expression. Epigenesis.
- 4. Cleavage: types of cleavages frog, insect, chicken, mammal.
- 5. Blastulation-Insect, frog, chicken, mammals. Slack and Smith experiments
- 6. Gastrulation: frog and chick. Cell migrations, presumptive fate maps.
- 7. Formation of the primitive embryonic axis.
- 8. Neural induction and competence- frog and chicken- cellular and molecular aspects.
- 9. Development of neural tube.
- 10. Development of somites and derivatives- myogenesis- regulation and quantal mitosis.
- 11. Metamorphosis in amphibians. Hormonal regulation, programmed cell death.
- 12. Development of the vertebrate eye- chick lens development and differentiation- programmed cell death. Lens regeneration in salamanders, tissue metaplasia.
- 13. Hematopoeisis. Lymphocytes, the structure of Immunoglobulin gene and recombination.
- 14. Limb regeneration in amphibia, blastema formation- metaplasia.
- 15. Developmental Biotechnology Allopheny, *in vitro* fertilization, Transfer of cells in the embryonal mass. Knockout mice.
- 16. Stem cell transplantation, therapy.
- 17. Neoplasia and carcinogenesis
- 18. Cellular aging and life span determinants.

Plant Developmental Biology

Characteristics of plant growth and development

Pollination biology

Formation of gamets, Fertilization and plant embryo types; Polyembryony and apoxixis Embryo development and Seed Development, Dormancy & Germination – Molecular Aspects Seed to seedling (Hormonal & light control of seedling growth, gene expression during seedling development)

Cellular and molecular features of development of seedling to adult vegetative plant body Organization of shoot & root apex,

Cell fate & tissue differentiation in meristems,

Growth & development of roots, stems & leaves,

Development of vascular tissues

Flower development and the molecular controls

Molecular genetics of plant development

Cell – cell communication during plant development

IBT 406 T Microbial Biotechnology (2C)

1. Microbes as biocontrol agents Baculoviruses, entomopathogenic fungi, *BacillusthurinigiensisBacillussphaericusPaenibacilluspopilae*, Microbe derived inhibitors

06

- Biology of nitrogen fixation, preparation of different types of inoculants (Types of inoculants (nitrogen fixers phosphate solubilizers, plant growth promoting rhizobacteria, PGPR, composting) 08
- 3. Introduction to the use of microbes in environmental Applications, Bioremediation, bioaugemntationBioemulsifiers, biosurfactants, MEOR, Leaching of ores
- 4. Microbial fuels (Methane, Hydrogen)

12

4

IBT 404T -Genetics of Higher Organisms (2C) General topics:

- 1. Mendelian Genetics: Mendel's Laws, concept of dominance, segregation, independent assortment; Chromosome theory of inheritance.
- 2. Nuclear genome: Genes in nuclei, chloroplast and mitochondria, classes of DNA in nuclear genome
- 3. Model systems in Genetic Analysis: Bacteriophage, *E. coli, Neurosporacrassa*, yeast, *Arabidopsis*, maize, *Drosophila*, *C. elegans*, Zebra fish, *Homosapiens* - General outline of life cycle, importance in Genetic analysis
- 4. Allelic and non-allelic interactions: Concept of alleles, types of dominance, lethal alleles, multiple alleles, test of allelism, complementation; Epistasis.
- 5. Mutation Classification, mechanism, repair, role in genetic analysis and evolution
- 6. Genome organization in viruses, prokaryotes and eukaryotes: Organization of nuclear and organellar genomes; C-value paradox, Repetitive DNA-satellite DNAs and interspersed repeated DNAs, Transposable elements, LINES, SINES, Alu family and their application in genome mapping.
- 7. Concept of gene: Conventional and modern views. Fine structure of gene, split genes, pseudogenes, non-coding genes, overlapping genes and multi-gene families.
- 8. Genome mapping: Physical maps -an overview and approaches.
- 9. Genome evolution

Plant Genetics:

- 1. Polyploidy: Introduction to euploids and anuploids and their cytogeneticbehavior. 1L
- 2. The inheritance of nuclear genes: qualitative v/s quantitative traits.
- 3. Quantitative inheritance Concept, Genes and Environment heritability, penetrance and expressivity
- 4. Phenotypic and molecular markers
- 5. linkage mapping and karyotypic evolution. 2L
- 6. Chlorplast genome: Breeding system, chloroplast genome organization, inheritance of chloroplast genes.
- 7. Mitochondria: mitochondrial genome organization, cytoplasmic male sterility. 1L
- 8. Transposable elements: Discovery of maize trasnposable elements 1L
- 9. Breeding systems in plants 1L

Animal genetics:

1. Historical overview: Mendel's laws, definition of terms, mutations, genes, alleles, multiple alleles, polymorphism, linkage groups, dominant and recessive lethal alleles, conditional mutants etc.

5L

- 2. Gene linkage: recombination, mapping of genes, Drosophila as model system. 5L
- 3. Population genetics: Hardy-Weinberg law, genes in population, mutation and selection as a means of variation. 5L

Suggested readings:

- 1. Concepts of Genetics Klug W. S. and Cummings M. R Prentice-Hall
- 2. Genetics-a Conceptual Approach Pierce B. A. Freeman
- 3. Genetics- Analysis of Genes and Genomes Hartle D. L. and Jones E. W. Jones & Bartlett
- 4. An Introduction to Genetic Analysis Griffith A. F. et al Freeman
- 5. Principles of Genetics Snustad D. P. and Simmons M. J. John Wiley & Sons.

IBT 422 P-Laboratory Exercises in Microbial Biotechnology (2	2C)	
Studies on Bacillus thurinigiensis		2
Isolation and characterization of Nitrogen fixers	2	
Isolation and characterization of Phosphate solubilizers	1	
Preparation of inoculants		1
Enrichment culture for hydrocarbon degradation	2	
Production and characterization of emulsifiers by microbes		2

IBT 328P-Laboratory Exercises in Developmental Biology (1C) Plant Developmental Biology (1C)

Any three of the following

- 1. Study of seed structure
 - a. Dicotyledonous seed
 - b. Monocotyledonous seed
- 2. Study of seed germination in different types of seeds (seeds collected by students)
- 3. Study of meristems (Shoot and root apical meristems)Isolation of shoot apical meristems from seedling, young and mature vegetative plant.Histochemical comparison between vegetative SA and reproductively induced SA 1P
- 4. Dissection of developing embryo and observation of the stages (Observations on stages of embryo development, dissection and isolation of developing)embryo (3 stages)
- 5. Study of permanent slides of types and stages of embryo developmental
- 6. Study of pollen germination and pollen tube development(*In vitro* germination of spore/pollen)
- 7. Tracing the course of stomatal development and observations on stomatal types.
- 8. Histochemical analysis of secondary growth (primary to secondary axis)
- 9. Observations on types of endosperm, dissection and isolation of endosperm

Animal Developmental Biology (1C)

1.	Preparation of culture media, autoclaving and sterilization		1P
2.	Gross anatomy of chick embryo	2P	
3.	Filter paper ring method for <i>in vitro</i> culturing and harvesting of chick Embryo	3P	
4.	Mounting of chick embryo and preparation of permanent mounts		2P
5.	Heart and blood vessel formation during development	2P	
6.	Identification of stages of development by formation of neural crest and somites	2P	

IBT 513 (T+P)-Basic Separation Techniques in Biology & Biophysics (3C)

- 1. HPLC, HPAEC, GC, Hydrophobic Interaction Chromatography, countercurrent chromatography
- 2. Advanced techniques: LC-MS, GC, GC-MS, SEC-MALS
- 3. Cell organelle separation/ Ultracentrifugation
- 4. Labeling techniques
- 5. Pull down assays
- 6. Ultrafiltration
- 7. Capillary electrophoresis, counter current immune-electrophoresis

Laboratory Practices in Basic Separation Techniques in Biology

- HPLC analysis of given sample (qualitative and quantitative)
- GC analysis of given sample(qualitative and quantitative)
- LC-MS analysis of tryptic digest of proteins
- LC-MS analysis to determine the molecular size of pure protein
- Ultracentrifugation for cell organelle separation
- Pull down assay
- Labeling techniques
- 2D-PAGE (Isoelectric focusing (IEF) followed by SDS-PAGE)

IBT 325 (T+P) -Introduction to Computational Biology (2C)

1. History of computation biology (2 Lecture)

2. Introduction of computation biology packages (6 Lecture)

- 2.1. Python and biopython
- 2.2. Perl and biolperl
- 2.3. R packages, bioconductor
- 2.4. MySql
- 2.5. MATLAB
- 3. Application of computation biology in research and development (2)
- 4. Current status and future prospects of computational biology (5)
- 5. Hands on and the tutorials (5 Practicals)
 - 5.1. Python and biopython
 - 5.2. Perl and biolperl
 - 5.3. R package
 - 5.4. MySql
 - 5.5. MATLAB

Elective Courses: Pl note minimum 10 students/subject are required to run the course.

IBT-EL9 (T+P) Histochemistry and cytochemistry (3C)

1. Fundamentals of histology: tissue structure and their organization	2L	
2. Fixatives: Types and choice	3L	
3. Sample preparation		3L
4. Stains: Methods tools and techniques for tissue staining		3L
5. Principles of histochemical reactions	2L	
6. Staining and visualization of a) carbohydrates b) proteins c) lipids d) Nucleic acids	3L	
Practicals		
1. Tissue fixation, Processing and sectioning		3P
2. Staining and permanent mount preparation	1P	
3. Detection of carbohydrates/ Lipids/ polysaccharides/nucleic acids /proteins	1P	
4. Immunohistochemistry techniques		2P
5. In situ detection of nucleic acid/ protein/ polysaccharide		1P

IBT-EL10 (T) - Heterocyclic Chemistry of Bioorganic Compounds(3C)

- 1. 5-membered heterocycles: Furan, Pyrrole and Thiophene, Condensed 5-membered heterocycles-Indoles, Benzofurans and benzothiophene, Pyridine, Quinoline and isoquinoline
- 2. Pyrimidines and Purines

Reference:

- Heterocyclic Chemistry by J A Joule and G F Smith
- Essentials of Organic Chemistry by P M Dewick, 2006

IBT-EL11 (T+P) -Basics of model systems in Biology (3C)

Model systems in research: (30 L)

- 1. Microorganisms (Escherichia coli, Neurosporacrassa, Saccharomyces cerevisiae)
- 2. Plant (Arabidoposis, Nicotiana)
- 3. Protozoa (Entamoeba, Dictyostelium)
- 4. Arthropoda (Periplanata, Drosophila)
- 5. Nematode (*Caenorhabditiselegans*)
- 6. Fish (Zebra fish)
- 7. Amphibian (Xenopus)
- 8. Bird (Chick)
- 9. Mammals (Mouse, Rat, Guineapig, Pig, Canine, Horse)
- 10. Higher primates (Macaque, Chimp, Gorilla)
- 11. Lynx (Écology model)

Practical

Laboratory introduction to model systems, their cultivation/ maintenance (any 5)

Semester VI (New Syllabus)

IB	Г 210Т- Immunology 1 (2 credit) (30L)		
	Overview of immunology	3L	
	Cell and organs of immune system	3L	
	Antibodies structure and function	3L	
	Antigen and antibody interaction principles and application	3L	
	Organization and expression of immunoglobulin gene	5L	
	B cell generation, activation and differentiation	5L	
	Antigen processing and presentation		4L
	Cytokines	4L	
IB	Γ 309 T – Bioinformatics (2 credits)		
	Overview of Bioinformatics		(1L)
	Nature of biological data	(2L)	
	Major Bioinformatics Resources	(1L)	
	Literature databases (searching & downloading)	(1L)	
	Introduction & overview of Biological databases	(1L)	
	Nucleic Acid sequence databases	(3L)	
	GenBank		
	EMBL		
	DDBJ		
	Protein sequence databases	(3L)	
	PIR-PSD		
	SwissProt		
	TrEMBL/GenPept		
	Database searches: I	(2L)	
	Text-based searching		
	Simple and advanced forms		
	Manipulation of displays		
	Entrez/SRS- query engines		
	Computational molecular biology & genetics	(2L)	
	Overview		
	Exploring EMBOSS series		
	Exploring OMIM		
	Database searches: II		
	Sequence comparisons & alignment concepts	(6L)	
	Fundamentals of sequence-based searching		
	Scoring Matrices		
	Introduction to BLAST series		
	Introduction to FASTA		
	Pairwise Sequence Alignments	(6L)	
	Global Alignments - Needleman Wunsch Algorithm		
	Local Alignments - Smith Waterman Algorithm		
	Structure databases	(2L)	
	PDB	()	
	NDB		
	Visualization& other utilities		

Reference:

BAXEVANIS, A.D. & OUELLETTE, B,F.F.: Bioinformatics: a practical guide to the analysis of genes and proteins. 2nd Ed.. 2002. John Wiley & Sons, Inc. Publications, New York. BAXEVANIS, A.D., DAVISON, D.B., PAGE, R.D.M. & PETSKO, G.A.: Current protocols in

bioinformatics. 2004. John Wiley & Sons, Inc. Publications, New York.

ORENGO, C., JONES, D. & THORNTON, J.: Bioinformatics: genes, proteins and computers. 2003. Bios Scientific Publishers, Ltd. Oxford.

IBT 409 (T+P) - Plant Tissue Culture (2C)

Introduction & Historical Overview of Plant Tissue Culture	1 L	
Nutritional Media: Obligatory & Optional Constituents	2 L	
Plant Growth Regulators with special reference to Plant Tissue Cultu	are Systems	s 2L
Incubation Systems: Light & Dark, Static & Agitated	1L	
Totipotency, Growth & Cytodifferentiation of Cultured Plant Tissuer	s 1	L
Callus & Suspension Culture Systems	1L	
Organogenesis: Direct & Indirect- Basic aspects 1L		
Culture Systems: Differentiated, Undifferentiated		2L
Somaclonal&Gametoclonal Variation2L		
Spontaneous & Genetic Variations		
Genetic & Epigenetic Variations		
Problems in Plant Tissue Culture: Contamination, Phenolics, Recalcitrance, 2L		
Seasonal Variations in Response		

Practical:

- 1. Hydroponics experiment to identify the importance of major, minor elements on plant growth
- 2. Preparation of stock solutions, glassware and labware for plant tissue culture & media
- 3. Preparation of PTC media in plates, tubes, jars, flasks.
- 4. Surface sterilization of seeds and *in vitro* germination
- 5. Effect of plant growth regulators and their combinations on *in vitro* developments in *Nicotiana tabacum*
- 6. Establishment of callus culture/organ culture

IBT 326 P- Lab Exercises in Bioinformatics (2C)

Major Bioinformatics Resources		
Literature databases (searching & downloading)		
Nucleic Acid sequence databases		(3P)
GenBank		
EMBL		
DDBJ		
Protein sequence databases		(3P)
PIR-PSD		
SwissProt		
TrEMBL/GenPept		
Database searches: I		(3P)
Text-based searching		
Simple and advanced forms		
Manipulation of displays		
Entrez/SRS- query engines		
Computational molecular biology & genetics	(4P)	
Overview		
Exploring EMBOSS series		
Exploring OMIM		
Database searches: II		
Sequence comparisons & alignment		(8P)
NW, SW, BLAST & FASTA		
Structure databases		(5P)

PDB NDB Visualization& other utilities

IBT 224 P Techniques in Immunology

2 credits

Raising antibodies 1**P** Routes of immunization 1P Purification and characterization of immunoglobin 3P Ouchterlony double diffusion 1P Immunoelectrophoresis 1P Conjugation of antibodies 2P Development of dot blot 1P

IBT 423 (T+P) - Animal Cell Culture I (2C)

Theory

1.	Introduction to animal tissue culture lab: Instrumentation and w	orking principles; culture vessels;
	glass wares and plastic wares.	3L
2.	Types of media (Basic and Specialized) and their composition:	Balanced salt solution, synthetic
	media, sera, dissociation media, antibiotics, growth factors and s	ubstrates. 3L
3.	Types of contamination in a tissue culture lab and their sources.	2L
4.	Maintenance of sterility and aseptic techniques.	1L
5.	Types of cultures: On the basis of adherence; On the basis of	in vitro morphology; explant and
	disaggregated; anchorage-dependent and independent; undifferent	ntiated and differentiated.2L
6	Primary culture: Types of tissues: tissue harvesting: processing of	f tissue: cell counting

• •				,				
7.	Secondary cell	cultures	and	Cell	lines:	Characterization;	Maintenance;	Cryopreservation;
	Differentiation.							4L

8. Cell Growth Curve; Viability assays.		3L
9. Principles of cell separation and purification.		4L
10. Scale up of suspension and adherent cultures.	3L	
Practical		
1. Media preparation and Sterilization	1P	
2. Primary culture of chick embryo fibroblast	1P	
3. Cytogenetic Techniques		1P

3. Cytogenetic Techniques

IBT-EL12 (T+P) - Food Biotechnology (3C)

Theory:	
Food Microbiology (microbes associated with food,	Spoilage preservation food poisoning, food
infection)	10
Foods made by microbial activity (cheese making, Orie	ntal food products, pickles, mushroom cultivation
Single cell proteins)	10
Algal Biotechnology	5
Polysaccharides, biopalstics	5

Reference:

1. Jay, J.M. (2000) Modern Food Microbiology. Sixth Edition. Aspen Publishers, Inc., Gaithersburg, Maryland.

2. Doyle, M.P., Beuchat L.R., Montville, T.J. (2001) Food Microbiology. Fundamentals and Frontiers, ASM Press, Washington, DC.

3. Ray. B. (2001) Fundamental Food Microbiology.Second Edition. CRC Press **Practical:**

Isolation and characterization 1. (morphological, and biochemical) of Lactic acid bacteria (LAB)

2

2.	Isolation and characterization of microbes		
	from grains		2
3.	Isolation of dextran form Leuconostoc	1	
4.	Fermentation of fruit juices		1
5.	Thermal Death rate		1
6.	Thermal Death time		1
7.	Determination of most probable number of coliforms	2	

IBT-EL13 (T+P) - High-end instrumentation in Biology (3C) Topics 2 credits

(30 h)

1. Advanced Microscopy- Confocal Microscopy (Lifetime imaging, Multi photon imaging, super resolution), Phase contrast Microscopy (live cell imaging, scanning probe, annotation and analysis), Total Internal Reflection Fluorescence (TIRF) Microscopy (TD), Stimulated Emission Depletion (STED) Microscopy, Hybrid Multiplexed Sculpted

Semester VII:

SEMESTER VII-Core Courses	a b
IBT 407T Enzyme Technology	3 credits
1. Enzyme nomenclature/classification	2L
2. Enzyme Specificity, Enzyme activity & Specific activity	2L
3. Mechanism of enzyme catalysis	2L
4. Enzyme kinetics	18L
4.1 Rates of chemical reaction	
4.1.1 Collision theory	
4.1.2 Activation energy and transition-state theory	
4.2 Kinetics of enzyme catalyzed reactions	
4.2.1 single substrate reactions	
4.2.2 concept of rate, velocity and order of reaction	
4.2.3 Methods or Equations for plotting and analyzing data	
4.2.3.1 Michealis-Menten, Lineweaver Burk plots	
4.2.3.2 Modifications of MM kinetics and resulting plots(Wolf-Agusstin	sson- Hofstee plot,
Hanes-Woolf plot, Eadie-Scatchard plot, Scatchard plot for equilibrium bindir	ıg)
4.2.4 Multi-substrate reactions	
4.2.5 Enzyme inhibition	
4.2.5.1 Reversible inhibition	
4.2.5.1.1 LWB and modified plots for reversible inhibition	
4.2.5.1.2 Dixon plots	
4.2.5.2 irreversible inhibition	
4.2.6 Ligand binding to protein/enzymes	
4.2.6.1 Cooperativity	
4.2.6.2 Hill equation	
4.2.6.3 Adair equations for cooperative effects	
4.2.7 Allosteric enzymes	
4.2.7.1 Monod Wyman Changeux model	
4.2.7.2 Koshland Nemethyl Filmer model	
5. Immobilized enzymes	5L
5.1 Preparation or methods of immobilization	
5.2 Kinetics of immobilized enzyme preparations	
5.3 Diffusional limitation	
5.4 Factors affecting immobilized enzyme preparation	
5.5 Storage, stability and reusability	1.7
6. Whole cell immobilization	I L
7. Enzyme preparation and use	I L
8. Large scale enzyme production	2 L
9. Enzyme stabilization	2 L
10. Biphasic systems	2 L
IBT 602T Advances in Molecular Biology (30L) 2 credits	
1. DNA replication	2L
2. DNA damage & repair	2L
3. Chromatin architecture	3L
4. Transcription	3L
5. Post transcriptional modifications	3L
6. Translation	3L
7. Post translational modifications	3L
8. Protein trafficking	3L
9. Molecular biology techniques (e.g Sequencing, PCR, Microarray)	8L

IBT 310T Immunology II (30L)		2credits
1. T cells maturation, activation and differentiation		5L
2. B cell generation, activation and differentiation		5L
3. Complement system		3L
4. Cell mediated effector function		3L
5. Leukocyte migration and inflammation		3L
6. Hypersensitive reactions		3L
7. Immune response to infectious diseases & vaccines		3L
8. Tolerance, Autoimmunity, and Transplantation		3L
9. Immunodeficiency and immunomodulation		2L
IBT311 (T + P) Animal cell culture II 2	credits	
Theory :(1 credit)		
1. Cytogenetic Studies: Chromosome preparation and band	ing techniques.	1L
2. Stem Cells biology and its applications.	C	7L
3. Specialized cell culture: Keratinocytes, Melanocytes, Ne	rve Cells, Hepatocytes.	, Islets,
Skin Cells, Osteoclasts.		2L
4. Cell Fusion and Hybridoma Technology.		2L
5. Pathophysiology of tumor: tumorigenesis, angiogenesis a	and metastasis in in viv	<i>o</i> and
in vitro studies.	:	5L
Practical :(1 credit)		
1. Secondary culture: Handling and maintenance of cell line	es – subculturing of adl	herent and
suspension cell lines.		2P
2. Cell counting: Trypan blue exclusion method		1P
3. Cryopreservation and revival of cell cultures		2P
4. Specialized Cell culture: Stem cell culture and differentia	ation.	2P
IBT 411 (T + P) Bioinformatics II	:	3 credits
Revision - Sequence alignment concepts		1L
Multiple Sequence Alignments		12
• Overview		1L
Clustal-W method		2 + 3P
Applications of MSA		1 + 3P
Molecular Phylogeny		6+4P
Introduction to phylogeny		0 11
Clustering techniques		
Hierarchial & non-hierarchial		
Bootstrapping		
Interpretation of phylogenetic trees		
Derived Data and Derived Databases		
• Concept of derived data		2L
• Types of derived data - consensus, patterns, motifs, blo	2 + 3P	
 Derived databases: PROSITE BLOCKS PRINTS Pfa 	2 + 3P	
• Exploring various databases at InterPro		2 Р
 Derived Databases: SCOP_CATH_DALL 	$4 + 4(\mathbf{P})$	21
Analysis of Macromolecular sequences	(1)	
• Applications of various tools for protein sequence	6+4 (P)	
Analysis available at FxPASy such as	0++(1)	
Prediction of various secondary & tertiary structure of proteins		
Hydronathy profiles		
Post-translational modifications		
Signal peptides		
• Basic Concepts and tools for Prediction of B- and T-cel	ll epitopes $3 + 4(P)$	
References		

- 1. Baxevanis, A.D. & Ouellette, B,F.F.: Bioinformatics: a practical guide to the analysis of genes and proteins. 2nd Ed. 2002. John Wiley & Sons, Inc. Publications, New York.
- 2. Baxevanis, A.D., Davison, D.B., Page, R.D.M. & Petsko, G.A.: Current protocols in bioinformatics. 2004. John Wiley & Sons, Inc. Publications, New York.
- 3. Orengo, C., Jones, D. & Thornton, J.: Bioinformatics: genes, proteins and computers. 2003. Bios Scientific Publishers, Ltd. Oxford.

For Advanced / Additional Reading:

- 1. Ingvar Eidhammer, Inge Jonassen, William R. Taylor: Protein Bioinformatics. 2003 John Wiley And Sons Ltd (UK)
- 2. Higgins, D. & Taylor, W.: Bioinformatics : sequence, structure, and databank. 2000. Oxford University Press, Oxford, UK.
- 3. David Mount: Bioinformatics : sequence and genome analysis. 2004.. Cold Spring Harbor Laboratory Press, New York

IBP 621P Laboratory Exercises in Enzyme Technology 2 credits

Practical related to theory course

SEMSTER VII-Electives courses

IBT-EL15 (T+P) Nucleic acid and protein chemistry	3 credits
Nucleic acid chemistry	15L
1. DNA and RNA structure	
regular and irregular and dynamic structures	
2. Chemical Synthesis of oligodeoxyribonucleotides	
Esters and anhydrides of Oxy phosphorus acids	
Preparation of monomers, protecting and deprotectir	ng groups
Diester triester and and H-phosphonate chemistry	
Solid-phase organic synthesis - phosphramidate che	emistry
Synthesis of oligoribonucleotides	
Synthesis of modified oligonuleotides and their appl	ications
3. Sequencing methods	
4. Biosynthesis of nucleic acids	
Biosynthesis of purine and pyrimidines nucleotides (De novo	o and salvage pathways)
Drug inhibition of biosynthesis	
Polymerization	
Applications of synthetic oligonucleotides	
Protein chemistry	15 L
1. Background information : Amino acids, peptide bonds, pr	rimary and secondary
structures	1 L
2. Protein folding structure and function	
Determination of primary structure: Techniques, interpretation	on etc. including post translational
modification of proteins(viz. glycosylation, N-terminal mod	lification, hydroxylation & modified
amino acids) 2L	
Determination of secondary structure: UV, CD and fluoresce	ence 2L
Determination of quaternary structure: X-ray	2L
Functional proteins : Hemoglobin and some well characteris	sed enzymes / lectins / peptide
hormones	4L
3. Solid phase synthesis of peptides and their biological ap	plications 2L
4. Chemical modifications	2L
References:	
1. Introduction to Protein Structure(Garland Press, Second	Edition), by Carl Branden and John

- 2. Introduction to protein structure by Thomas Creighton
- 3. DNA structure and function by R. Sinden

Tooze.

4. Nucleic Acids: Structures, Properties, and Functions (University Science Books) edited by Victor Bloomfield, Donald Crothers, and Ignacio Tinoco

Practical: Based on theory portion

(1 credit)

(2 credits)

(1 credit)

IBT-EL16 (T+P) -Model systems to study Human biology 3 credits **Theory:** (2 credits) 1. In silico model 8L a) **QSPR** modelling b) Tissue modelling c) Morphogenesis d) Immune system e) Tumour modelling 2. In vitro model a) Organ biology (organoid, organ on chip) 8L b) Tissue Engineering & regenerative biology (thin film, hydrogel, scaffold, electro spun

- mat and others for Bone, heart, lung, skin, brain tissue) 8L
- c) Disease biology (Cancer, nephropathy, neuropathy, cardiomyopathy, liver and others) 7L (1 credit)

Practical: Based on theory portion

IBT-EL17 (T+P)- Natural Product and Medicinal Chemistry 3 credits

Theory:

- 1) Biodiversity for novel drug lead discovery
- 2) Isolation and structure determination of organic natural products of medicinal significance from plants and microbes
- 3) Studies on the structure and biochemistry of biological products
- 4) Examination of the biosynthesis of natural products
- 5) Evaluation of the biochemical effects of these active constituents
- 6) Semi- or total synthetic chemistry of pharmacologically active natural products (any one drugtaxol)

References:

1. Natural Products in Medicinal Chemistry, Volume 60, Editor(s): Stephen Hanessian

DOI:10.1002/9783527676545, © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Book Series: Methods and Principles in Medicinal Chemistry

2. Natural Products Chemistry Sources, Separations and Structures By Raymond Cooper and George Nicola, Copyright Year 2015, ISBN 9781466567610. Published July 30, 2014 by CRC Press206, Pages178

3. Natural Products and Drug Discovery, 1st EditionAn Integrated Approach, Editors: Subhash Mandal Vivekananda Mandal Tetsuya KonishieBook ISBN: 9780081021040, Paperback ISBN: 9780081020814, Imprint: Elsevier. Published Date: 16th February 2018

Practical:

- 1) Draw chemical structures and reactions by Chem draw software.
- 2) Analyze the purity of medicinal compounds.
- 3) Prepare medicinally important compounds / intermediates.
- 4) Synthesize medicinal compounds.

SEMESTER VIII- Core Courses

IBT 501(T+P)Introduction to Omics I 3 credits

Introduction to Types of Omics:1L

Genomics, transcriptomics, proteomics, metabolomics, lipid omics, metagenomics, interactomics, glycomics, epigenomics, secretomics, volatilomics, single cell omics (and any other relevant biomolecular omics)

DNA/RNA sequencing using the next generation sequencing approaches:2L

Technologies involved: Sanger, Solid, Illumina, Ion torrent, Roche 454 (pyrosequencing), single cell sequencing, Nanopore PacBio

De novo Sequencing, Reference based resequencing, Applications and limitations

Transcriptomics: 8L

subtypes as applicable to different RNA molecules including mRNA, rRNA, tRNA, miRNA, siRNA and other non-coding RNA

Sample processing and analysis pipeline, instrumentation used and outline of data analysis with emphasis on clustering and hierarchical analysis

DeNovo transcriptome assembly pipeline- Trinity workflow

Reference based transcriptome pipeline- Tuxedo workflow

Genome sequencing: 2L

Approaches, technologies used, Introduction to ways for genome sequence assembly and data analysis Steps and methods for Chromosome-level genome assembly- Hybrid approach

Proteomics: 5L

Mass spectrometry-based instrumentation used for proteomics

2D proteomics, peptide mass fingerprinting

Label free quantitative proteomics (In solution digestion)

Introduction to High-throughput quantitative proteomics, post-translational modifications,

Targeted proteomics, phosphoproteomics, Ion mobility to understand structural changes

Discovery vs targeted proteomics

Differential proteomics, relative vs absolute quantification

Sample preparation and data analysis for representative of the following methods

Labeling based quantitative proteomics: metabolic, isobaric, isotopic

Label free quantitative proteomics

Mass Spectrometry and Protein Identification

Protein Arrays, Protein Chips and their application

Applications of Proteomics in Life Sciences- Biomarker discovery, Understanding signaling cascade,

8L

protein-protein interaction, Diagnostics

Metabolomics:

Mass spectrometry-based instrumentation used for metabolomics

Frontend: HPLC, UPLC, Nano-LC, TLC with robotic arm

MS Ionization Sources: MALDI, ESI, APCI, APPI, DESI

Mass analyzer: Single Quadrupole, Ion trap/Orbitrap /, Triple Quadrupole, Q-TOF, FT-ICR

Sample preparation methods, instrumentation and data acquisition for MS based methods (MS, MS/MS, MSn, DDA, DIA)

NMR based metabolomics, sample preparation, instrumentation and data analysis

Comparison of NMR and Mass Spectrometry for performing metabolomics investigations

Key considerations in metabolomics: Sample preparation, Separation optimization, Selection of appropriate data acquisition method (positive and/or negative mode),

Metabolomic libraries and metabolite identification: using available software, databases and libraries. METLIN, HMDB, MONA etc

Quantitation of the annotated metabolites.

Analysis of the metabolomics data and identification of unknowns: GNPS, MZmine2, XCMS online. Approaches for Identification of unknown metabolites

Multivariate analysis methods used for analyzing large dimensionality data; construction of metabolic pathways involved.

Metagenomics:5L

Introduction to metagenomics; an overview of molecular techniques used in metagenomic;

Sample preparation, processing, steps, types of primers used for amplifications,

Construction of small-insert and large-insert metagenomic libraries, sequence-based and function bases screening of metagenomic libraries, Sequencing and data analysis

Use of T-RFLP and DNA-DNA hybridization methods for complementing metagenomics studies. Novel tools for the functional expression of metagenomic DNA; functional metagenomics as a technique for the discovery of novel enzymes and natural products approaches to mutagenic analysis.

Practical: (1credit)

- 1. Sample preparation, workflow, MS method development, data acquired and analyses methods for various omics applications -focus on transcriptomics and metabolomics
- 2. Role of different Bioinformatics tools and platforms in Proteomics
- 3. Proteomics Databases, Proteomics Analysis Tools at ExPaSy
- 4. Metabolomics online tools and platforms (Hands on sessions for analysis using the Metaboanalyst software)

IB	Г 60 1	T Introduction to Genetic Engineering	2 credits		
	1.Re	gulation of gene expression in prokaryotic and eukaryotic systems.		4L	
	2. l	Mutations & Site directed mutagenesis	3L	A T	
	3. Ph	age display and genetically engineered antibodies		2L	
	4.Ty	pes of Vectors: Viral and Non-viral vectors	6 T	6L	
	5.1sc	blation and application of recombinant proteins, fusion proteins	5L		
	6. Di	agnosis of genetic diseases and designing of Gene therapy 6L			
	/. Kt	a Desterial			
		a. Daciellai b. Veost			
		c Insect			
		d Mammalian			
		e. Plant			
	8. Co	onstruction of genomic and cDNA libraries		4L	
IR	Т603	T Metabolic Pathways	3 credits		
	1.	Metabolism overview	e el cuito		3L
	2.	Bioenergetics and role of ATP and phosphoryl group transfers			
	3.	Biological oxidation			
	4.	Carbohydrate Metabolism			
		Carbohydrate and their physiological importance			4L
		Glycolysis & its regulation			
		Gluconeogenesis Control of blood sugar and Anaplerotic reactions	1		2L
		Glycogen metabolism			3L
		Pentose phosphate pathway & other pathways of hexose metabolisi	n		2L
	5.	Pyruvate oxidation, TCA Cycle its regulation and Glyoxylate Cycle	e		5L
	6.	Oxidative phosphorylation, Electron transfers in biology and Role of	of ATP synth	ase	5L
	7.	Fatty Acid metabolism			8L
		Physiological significance of lipids			
		Biosynthesis of fatty acid and eicosanoids			
		Biosynthesis of Triacylglycerols			
		Oxidation of fatty acid (ketogensis)			
		Acylglycerol & sphingolpids metabolism			
	~	Cholesterol/sterol metabolism			0-
	8.	Carbohydrate synthesis in plants and bacteria			8L
		Photosynthetic Carbohydrate Synthesis			
		Photorespiration and C4 & CAM Pathways			

Starch and Glucose biosynthesis Synthesis of Bacterial Cell Wall Polysaccharides 9. Amino acid metabolism **References:** 1. Garrett & Grisham, Biochemistry, Saunders Publishing, 2. Voet and Voet. Biochemistry, second edition, Prentice-Hall, 3. Lehninger, Nelson and Cox. Principles of Biochemistry 4. Zubay. Biochemistry 5. Mathews, van Holde and Ahern. Biochemistry 6. Stryer, Biochemistry IBT 604 (T+P) Applications of Plant Tissue Culture 2 credits 1. Micropropagation: Theory & Commercial Applications 2L 2. Use of Organogenesis & Embryogenesis for Commercial Utilization 1L 3. Commercial Production of Plant Secondary Metabolites 3L Increase in production by use of suitable media supplements (Elicitors, 4. Protoplast Culture & Somatic / Parasexual Hybridization for Overcoming Incomapatibility Barriers - Somatic Hybrids, Cybrids 5. Germplasm Conservation 2L6. Ovule, Anther & Pollen Culture, Embryo rescue & Embryo Culture 2L 7. Transgenic Plants 3L Single Gene Transfer to Plant Cells: Concepts Methods of Gene Transfer: Direct & Indirect Stabilities & Instabilities in Transgene Expression **References:** 1. Biotechnology: Theory and techniques of Plant Biotechnology, Animal cell culture and Immunobiotechnology vols 1 and 2 by Jack K Chirikjian 2. Plant Biotechnology and its applications in Plant tissue culture by Ashwani Kumar and Shikha Roy

3. Altman A, Hasegawa PM, editors. Plant biotechnology and agriculture: prospects for the 21st century. Academic press; 2011 Oct 20.

Practical:(1 credit)

- 1. Micropropagation of Nicotiana tabacum
- 2. Somatic embryogenesis
- 3. Protoplast isolation and culture
- 4. Induction of callus and suspension culture
- 5. Ovule, Anther & Pollen Culture, Embryo rescue & Embryo Culture
- 6. Exploratory experiment to establish a plant culture of choice

IBT 622P Laboratory Exercises in Recombinant DNA Technology

1. Preparation of probe, gel electrophoresis and blotting, Hybridization

2. Construction of recombinant molecule using simple plasmid vector include isolation of plasmid, preparation of vector, preparation of donor DNA ligation, transformation, identification of recombinant, restriction analysis, conformation by Southern

- 3. Isolation of total DNA and RNA from tissue culture plants, RNA gel, Northern blot
- 4. Cell culture (CHO, COS), Transfection with GFP vector, selection of clone
- 5. Expression in bacterial system

Cell proliferation (cell cycle and cell metabolism)	7L
Cell death (apoptosis, necrosis and others)	5L
Diseases related to cellular organelles	6L
Principle of Flow Cytometry and its applications in cell biology.	4L

3 credits

6L

- Growth Factors, Stress Factors, Precursors, Antimetabolites, Defense Proteins etc.)
- 2L

Advances in microscopic techniques for cell biology applications (Confocal microscopy, TIRF, Live cell imaging, AFM). 5L Single cell analysis (Single cell RNA sequencing, trajectory analysis)3L

SEMESTER VIII-Electives courses

IBT-EL18 (T+P)Structural Biology and Protein Engineering 3 credits Structural Biology (1 credit)

Unit1: Revision -Basic concepts and theory of diffraction (both X-ray and electron diffraction) and Fourier optics and gives a basis to understand several of the most important methods for biomacromolecular structure determination (X-ray diffraction, cryo-EM).

Unit 2: Cryo electron microscopy- theory and applications of high-resolution structure determination and application for biological macromolecules including sample preparation, methodology, data acquisition, interpretation and model building. Case studies

Unit 3: X-Ray Crystallography- theory for X-ray crystallography and its application for biological macromolecular structure determination. Sample preparation, methodology, collection and processing of data from synchrotron radiation sources, experimental phasing, interpretation of electron density maps and modelling, refinement, replacement and validation of structural models. Case studies

Unit 4: NMR- Theory of solution state NMR spectroscopy with emphasis on applications to proteins and biological macromolecules. Classical and quantum mechanical descriptions of NMR, product operator formalism, multidimensional NMR, phase cycling, gradient selection, relaxation phenomena, and protein resonance assignments. Determination of three-dimensional structure of proteins and nucleic acids using distance constraints.

Protein Engineering

(1 credit)

Unit 1: Overview and applications of protein engineering in biotechnology. Revision- Isolation of genes from host organisms, cloning, preparation of recombinant proteins, host organisms, protein expression and protein purification

Unit 2: Rational design, prediction of the structure of enzyme variant, primer design to introduce mutations, evaluation of the effect of mutations on protein- construction of plasmids

Unit 3: Directed evolution, random mutagenesis, mutant screening and selection strategies, Bacteriophage display libraries-phage and cell surface display systems for protein-protein interaction.

Unit 4: Computational protein design, Non-natural amino acids in protein engineering, Post-translational modifications in protein engineering,

Unit 5: Tools and techniques for protein analysis, Application of protein engineering to improve enzyme catalytic efficiency, stability, enantioselectivity. Case studies

References:

1. Textbook of structural biology. Liljas Anders, Liljas Lars, Ash Miriam-Rose, Lindblom Göran, Nissen Poul, Kjeldgaard Morten, World Scientific, 2009

2. Schwede T, Computational Structural Biology: Methods and Applications, World Scientific, 2008.

3.Petsko G, Ringe D, Protein structure and Function, Oxford University Press, 2009. 4.A.McPherson, Introduction to Macromolecular Crystallography. 2nd edition (2009)., John Wiley Co.

5. Sheldon Park and Jennifer Cochran. Protein Engineering and Design. CRC Press, 2010

6. Stefan Lutz and Uwe Bornscheuer. Protein Engineering Handbook. Wiley-VCH, 2006

7. Directed evolution library creation: methods and protocols. Edited by Frances Hamilton Arnold

- George Georgiou. Totowa, N.J.: Humana Press, 2003. x, 224. ISBN 1588292851. info 8.Fersht, Alan. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: W.H. Freeman, 1998. xxi, 631 s. ISBN 0-7167-3268-8. info 9. Protein Engineering: Principles and Practice. Jeffrey L. Cleland (Editor), Charles S. Craik (Editor) ISBN: 978-0-471-10354-7. Wiley

Practical: Based on theory portion

(1 credit)

IBT-EL19 (T+P) Applications of Biotechnology in the Environment Theory:	3 credits (2 credits)
Status and Scope of Biotechnology in Environmental protection	1L
Biological Processes for Industrial and domestic effluent	9L
Treatment, Aerobic Biological Treatment,	
Anaerobic Biological Treatment.	
Role of biotechnology in water purification systems	2L
Metal microbe interactions: Heavy Metal Pollution	8L
and impact on environment, Microbial Systems	
for Heavy Metal Accumulation, Biosorption,	
molecular mechanisms of heavy metal tolerance, role of	
Microbes in synthesis of nanoparticles	e T
Biotechnology for Hazardous Waste Management	5L
Persistent organic pollutants, Xenobiotics, Biological	
Detoxification of PAH Distantiation for Air Dellection Control	21
Biotechniques for Air Pollution Control.	2L 21
Solid waste Management	3L
1 Riotechnology: Theory and techniques of Plant Riotechn	alogy Animal call culture and
I. Biotechnology. Theory and techniques of Flant Biotechnology.	blogy, Allinai celi culture and
2 Plant Biotechnology and its applications in Plant tissue of	ultureby Ashwani Kumar and
2. I fait blocchiology and its applications in Flait tissue of Shikha Roy	antureby Ashwalli Kulliar and
Practical: Based on theory portion	(1 credit)
IBT-FL 20 (T+P) High-End Instrumentation II	3 credit
1. Atomic force microscope, instrumentation, principle, methodol	ogy. Resolution.recent advances.
data analysis and case study	-8,,,
2. Protein thermal shift/ melt curve and ligand interactions anal	vsis
Protein stability and thermal denaturation,	5
Differential scanning fluorimetry, Melting curve/thermal shift/lig	and screening data analysis and
case studies	
3. Protein-binding measurement instruments	
Microscale thermophoresis, ITC, experimental set up, measu	rement and data analysis
4. Medical Instruments	
A. Imaging	
Basics of Laser physics, Laser beam in biology & medicine, appl	ications of Lasers in therapy and
diagnosis, photo-thermal effects, photochemical effect, X	K-ray imaging, CT scan, MRI,
Ultrasound applications.	
In-vitro & in-vivo imaging using radioisotopes, PET scan	
B. Electrophysiology	
ECG, working of patch-clamps, EEG & use of metal discs, EMG	test and basis for analysis
References:	1 1 4 1 1 4 1 7
1. Atomic Force Microscopy: Understanding Basic Mo	des and Advanced Applications.
Book by Greg Haugstad, whey.	ton Oufoud University Duran
2. Atomic Force Microscopy by Paul west and Peter Ea	http://www.locambyl.combyl.combyl.com
5. Introduction to biomedical Equipment technology	by Joseph J. Carræ John. M.
4. Medical instrumentation: Application and design by	J. G. Webster John Wiley and
Sons 5 Department Jackson and Later and Later Collin W/1	WCH Verlag Carl H. C.
5. Protein-Ligand Interactions by Holger Gohlke, Wil KGaA	ey-vCH veriag GmbH & Co.
6. Biophysical Approaches Determining Ligand Bin Detection, Measurement and Modelling by Alberto	ding to Biomolecular Targets: Podjarny, Annick P Dejaegere,

Bruno Kieffer, Wiley. **Practical:** Based on theory portion

(1 credit)

SEMESTER IX

Core Courses

IBT-502T+P Omics II

2 credits

1 Credit

- 1. Introduction to post genomic bioinformatics
- 2. Comparative Genomics: methods, applications
- 3. Structural and functional genomics
- 4. Bioconductor as applied to the analysis of the omics data
- 5. Case studies in Omics detailing the pipeline and impact of the outcome on Biology
 - a. Transcriptomics
 - b. Proteomics
 - c. Genomics
 - d. Metagenomics
- 6. Gene ontology

Omics Practical: (Any 3) 1 Credit 1. Data analysis using Python, retrieving genes based on sequence similarity from the transcriptomics data

- 2. Bioconductor based data analysis
- 3. Tools for metabolomics data analysis
- 4. Tools for gene ontology

IBT 503 T- Review Writing

Students will write a review on a Contemporary topic in Biotechnology

IBT 701T Fermentation Technology and Downstream Processing						
Fermentation Technology						
Process calculations and stoichiometry.	3					
Metabolic engineering	2					
Transport in reactors (oxygen, substrates, heat, (material balance)	5					
Bioreactor design						
Types of reactors, sterilization Utilities: steam air water	3					
Solid-state fermentation	2					
Instrumentation and control (probes of different types)	2					
Specific industrial process applications in plant systems	6					
(Suspension callus and hairy root cultures)						
ii) Specific industrial processes involving microbes	1					
Specific industrial process applications in animal systems						

Background, need, current products, cell lines. 1	
Production strategy, Production platform 1	
Vector design 1	
Cell line development 1	
Media development 1	
Bioreactor design (animal cell culture specific) 1	
Downstream processing	
Removal of insoluble: Centrifugation, sedimentation 2	
Flocculation, electro-precipitation, gravity settling	
(grinding, homogenization, leaching if required)	
Product isolation: distillation, solvent extraction, 8	
Adsorption, ultrafiltration, membrane separation, precipitation.	
Product purification: chromatography, (fractional) 5	
Crystallization recrystallization desiccation	
spray drying product formulation	
spray drying, product formulation	
 References: Bioseparations: Downstream Processing for Biotechnology by Paul A. Belter (A Cussler, Wei-Shou Hu Principles of Fermentation Technology P F Stanbury, A Whitaker, S Hall 	Author), E. L.
 Fermentation and Enzyme Technology Wang W Fermentation Microbiology and Biotechnology, Second Edition by E. M. T. El-Mansi, C. F. A. Bryce, Arnold L. Demain, A.R. Allman 	
IBT-702T+P Plant Biotechnology in Agriculture 3 (1T + 2P) credit	
Theory 1 credit	
1. Endosperm Culture & Production of Seedless Plants	2L
2. Apomixis & Experimental Polyembryony	2L
3. Molecular Farming & Marker assisted plant breeding	2L
4. Present Status of Transgenic Plants - Scientific and commercial	5L
with case studies: Edible vaccine, CRISPER-CAS in plant, Food traits modified	
transgenic, phytoremediation, yield & quality of food/ fruit, Bioplastics	
 Gene silencing in plants Use of Bioreactors in Plant Production & Scale-up of specialized metabolites Metabolic Engineering in plants 	1L 1L 1L

8. Diagnostic Kits & Virus Indexing

References:

- 1. Plant Biotechnology and its applications in Plant tissue culture by Ashwani Kumar and Shikha Roy
- 2. Introduction to plant biotechnology (3/e). Chawla H. CRC Press; 2011 May 24.
- 3. Plant biotechnology in agriculture. Job D. Biochimie. 2002 Nov 1;84(11):1105-10.
- 4. Modern applications of plant biotechnology in pharmaceutical sciences. Bhatia S, Sharma K, Dahiya R, Bera T. Academic Press; 2015 Jul 22.

Practical:

- 1. Designing primers for overexpression and silencing of genes in plants
- 2. Agrobacterium tumefaciens mediated genetic transformation of plants
- 3. Rhizobium rhizogenes mediated hairy root induction in plants
- 4. Agroinfusion of plants for transient gene expression
- 5. Suspension culture for specialized metabolite biosynthesis in plant cultures

IBT-703T Seminars in Advanced Genetic Engineering

The course will be conducted in the form of student presentations on latest technologies with case studies.

1. Powerful tools for genome-scale engineering Crisper CAS9, Zinc finger nuclease technology

a. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, CRISPRa; CRISPRi

- b. Multiplex automated genome engineering (MAGE),
- c. Promoter engineering,
- d. CRISPR-based regulations,
- e. Synthetic small regulatory RNA (sRNA)-based knockdown
- 2. ChiP Sequencing and Ribosome fingerprinting
- 3. High C analysis genome-wide Chromatin Conformation Capture
- 4. Lentiviral libraries
- 5. Functional genomics and phenomics
- 6. Genome wide expression profiling
- 7. Epigenomic mapping- Tools for study of epigenetic modifications
 - a. DNA methylation
 - b. Chromatin
 - c. RNA

1L

2 credits

d. microRNA regulatory activities

e. Non-coding RNA

8. Gene drive

9. GE techniques as applicable in species conservation

9. Inclusion of any other recent advanced tool and technique developed in the field of genetic engineering.

IBT-721P Laboratory Exercises in Fermentation Technology and Downstream Processing 3 credits

Practical corresponding to IBT 701T

Semester X		
Core Courses		
Subject Code	Subject Title	Number of Credits
IBT-723P	Project	20